K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800

=> Tứ giác BEHF nội tiếp.

b, Xét tứ giác AFEC có :

góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)

=> Tứ giác AFEC nội tiếp

31 tháng 5 2021

Ta có \(\widehat{BEC}=\widehat{BFC}=90^o\) nên tứ giác BCEF nội tiếp đường tròn đường kính BC. Tâm I của đường tròn này là trung điểm của BC

31 tháng 5 2021

Đúng ko vậy ạ 

a) Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

nên BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Tâm I của đường tròn ngoại tiếp tứ giác BCEF là trung điểm của BC

28 tháng 6 2021

bạn tham khảo ở đây nha,bài này mình từng làm rồi

https://hoc24.vn/cau-hoi/881cho-tam-giac-abc-nhon-noi-tiep-duong-tron-o-cac-duong-cao-adbecf-cat-nhau-tai-ha-chung-minh-tu-giac-bcef-noi-tiep-va-xac-dinh-tam-i-cua-duong-tron-ngoai-tiep-tu-giacb-duong-thang-ef-cat-duon.1092906662181

Sửa đề: Hai đường cao BN,CK

a: góc AKH+góc ANH=180 độ

=>AKHN nội tiếp

Tâm là trung điểm của AH

b: Xet ΔANB vuông tại N và ΔAKC vuông tại K có

góc A chung

=>ΔANB đồng dạng với ΔAKC

=>NB/KC=AN/AK

=>NB*AK=AN*KC

c: góc BKC=góc BNC=90 độ

=>BKNC nội tiếp

d: Xét ΔACB co

BN,CK là đường cao

BN cắt CK tại H

=>H là trực tâm

=>AH vuông góc CB

23 tháng 6 2021

a) Ta có: \(\angle BFC=\angle BEC=90\Rightarrow BCEF\) nội tiếp

Gọi I là trung điểm BC

Ta có: \(\Delta BFC\) vuông tại F có I là trung điểm BC \(\Rightarrow IF=IB=IC\)

 \(\Delta BEC\) vuông tại E có I là trung điểm BC \(\Rightarrow IE=IB=IC\)

\(\Rightarrow IE=IF=IB=IC\Rightarrow I\) là tâm (BCEF)

b) Xét \(\Delta MKB\) và \(\Delta MCT:\) Ta có: \(\left\{{}\begin{matrix}\angle MKB=\angle MCT\left(BKTCnt\right)\\\angle TMCchung\end{matrix}\right.\)

\(\Rightarrow\Delta MKB\sim\Delta MCT\left(g-g\right)\Rightarrow\dfrac{MK}{MC}=\dfrac{MB}{MT}\Rightarrow MK.MT=MB.MC\left(1\right)\)

Xét \(\Delta MFB\) và \(\Delta MCE:\) Ta có: \(\left\{{}\begin{matrix}\angle MFB=\angle MCE\left(BCEFnt\right)\\\angle EMCchung\end{matrix}\right.\)

\(\Rightarrow\Delta MFB\sim\Delta MCE\left(g-g\right)\Rightarrow\dfrac{MF}{MC}=\dfrac{MB}{ME}\Rightarrow MB.MC=MF.ME\left(2\right)\)

Ta có: \(\angle AFC=\angle ADC=90\Rightarrow AFDC\) nội tiếp

Tương tự \(\Rightarrow ABDE,AEHF\) nội tiếp

Ta có: \(\angle FEI=\angle FEB+\angle BEI=\angle FAH+\angle EBI\) (\(\Delta EBI\) cân tại I)

\(=\angle FAH+\angle EAD=\angle BAC=\angle BDF\) (AFDC nội tiếp)

\(\Rightarrow FDIE\) nội tiếp \(\Rightarrow\angle MDF=\angle MEI\)

Xét \(\Delta MFD\) và \(\Delta MIE:\) Ta có: \(\left\{{}\begin{matrix}\angle MDF=\angle MEI\\\angle EMIchung\end{matrix}\right.\)

\(\Rightarrow\Delta MFD\sim\Delta MIE\left(g-g\right)\Rightarrow\dfrac{MF}{MI}=\dfrac{MD}{ME}\Rightarrow MD.MI=MF.ME\left(3\right)\)

Từ (1),(2) và (3) \(\Rightarrow MD.MI=MK.MT\)

c) Từ C kẻ đường thẳng song song với NS cắt AB,AD lần lượt tại J và L 

Vì \(CJ\parallel NS\) và \(NS\bot IH\Rightarrow CJ\bot IH\) mà \(CD\bot HL\)

\(\Rightarrow I\) là trực tâm tam giác CHL \(\Rightarrow LI\bot HC\) mà \(AJ\bot CH\)

\(\Rightarrow IL\parallel BJ\) mà I là trung điểm BC \(\Rightarrow L\) là trung điểm CJ

mà \(CJ\parallel NS\) \(\Rightarrow G\) là trung điểm NS (dùng Thales để biến đổi thôi,bạn tự chứng minh nha)

23 tháng 6 2021

a: Xét tứ giác MBHC có

\(\widehat{MBH}+\widehat{MCH}=180^0\)

Do đó: MBHC là tứ giác nội tiếp

b: Sửa đề: \(MC\cdot MP=MB\cdot MN\)

Xét ΔMCP vuông tại C và ΔMBN vuông tại B có

\(\widehat{BMN}\) chung

Do đó: ΔMCP\(\sim\)ΔMBN

Suy ra: MC/MB=MP/MN

hay \(MC\cdot MN=MB\cdot MP\)