K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

Vì 2 > 0 nên để \(\frac{2}{x-3}< 0\)  thì   x - 3 < 0          <=>    x < 3

14 tháng 5 2018

\(\frac{2}{x-3}< 0\)

vì 2>0 => x-3 < 0 <=>x<3

14 tháng 5 2018

\(\dfrac{2}{3-x}< 0< =>3-x< 0\left(2>0\right)< =>x>3\)

vậy........

chúc bạn hcoj tốt ^^

14 tháng 5 2018

Tríp Bô Hắc: ủa 2 chả lớn hơn 0,điều hiển nhiên mà

10 tháng 5 2018

Đường ....... sai rồi :v 

Áp dụng bđt Cauchy - Schwarz dạng engel (full name nhé) , ta có 

\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=\frac{9}{3+a+b+c}\ge\frac{9}{3+3}=\frac{3}{2}\)

Đẳng thức xảy ra <=> \(a=b=c=1\)

10 tháng 5 2018

k cho mik đi rồi mik giải cho

20 tháng 12 2020

gồm các hình biểu diễn: mặt bằng, mặt đứng, mặt cắt

20 tháng 12 2020

bản vẽ nhà gồm các hình biểu diễn: mặt bằng, mặt đứng, maựt cắt và 1 số liệu sát định hình đạng, kích thước, cấu tạo của ngôi nhà

21 tháng 7 2017

\(x^3+x=0\)

\(\Leftrightarrow x\left(x^2+1\right)=0\)

thấy :x2+1>0 loại

suy ra x=0

20 tháng 7 2017

a) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\) (đúng)

Hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\) (vô lý)

=> \(-1< x< 2\)

b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

Bất đẳng thức xảy ra khi 2 thừa số đồng dấu .

\(\left(1\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)

\(\left(2\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)

Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\) thì thõa mãn 

20 tháng 7 2017

a) Để (x+1)(x-2)<0 khi x+1 và x-2 trái dấu 

Mà x+1 > x-2 nên \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}}\)

=> -1 < x < 2

Vậy -1 < x < 2

b) Đề \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) khi x+2 và \(\frac{2}{3}\) cùng dấu

Với x+2 và \(x+\frac{2}{3}\) cùng dương : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)

Với x+2 và \(x+\frac{2}{3}\) cùng âm : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)

Vậy x>2 hoặc x < \(\frac{2}{3}\)

28 tháng 9 2021

\(\left(x+2\right)^2-9=0\)

\(\Rightarrow\left(x+2\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}x+2=3\\x+2=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Vậy...

c: \(f\left(5-2\sqrt{3}\right)=f\left(2\right)\)

\(\Leftrightarrow\sqrt{4-2\sqrt{3}}+m\left(5-2\sqrt{3}\right)+2=\sqrt{2-1}+2m+2\)

\(\Leftrightarrow\sqrt{3}+1+m\left(5-2\sqrt{3}\right)=2m+3\)

\(\Leftrightarrow m\left(3-2\sqrt{3}\right)=2-\sqrt{3}\)

hay \(m=-\dfrac{\sqrt{3}}{3}\)