tìm x thuộc z sao cho
n^2+9n+7 là bội n+2
n-3 là bội của n^2 +4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2+9n+7\(⋮\)n+2
<=> n2+2n+7n+7\(⋮\)n+2
<=> n(n+2)+7n+7\(⋮\)n+2
Vì n(n+2)\(⋮\)n+2 nên 7n+7\(⋮\)n+2 (1)
Ta lại có n+2\(⋮\)n+2
<=> 7(n+2)\(⋮\)n+2
<=> 7n+14\(⋮\)n+2 (2)
Từ (1) và (2) ta có
7n+14-7n-7\(⋮\)n+2
<=> 7\(⋮\)n+2
n+2 \(\in\){1,7,-1,-7}
<=> n\(\in\){ -1,5,-3,-9}
5/
+/ n-1=(n+5)-6 => để n-1 là bội của n+5 thì 6 phải chia hết cho n+5 => n+5={-6, -3, -2, -1, 1, 2, 3, 6}
=> n={-11, -8, -7, -6, 1, 2, 3, 4}. (1)
+/ n+5=n-1+6 => để n+5 là bội của n-1 thì 6 phải chia hết cho n-1 => n-1={-6, -3, -2, -1, 1, 2, 3, 6}
=> n={-5; -2; -1; 0; 2; 3; 4; 7} (2)
Từ (1) và (2), để thỏa mãn đầu bài thì n={2; 3; 4}
6) a) n2-7=n2+3n-3n-9+2 = n(n+3)-3(n+3)+2
=> Để n2-7 là bội của n+3 thì 2 phải chia hết cho n+3 => n+3={-2, -1, 1, 2} => n={-5; -4; -2; -1}
3n+2 chia hết cho 2n-1
=>6n+4 chia hết cho 2n-1
=>6n-3+7 chia hết cho 2n-1
=>3(2n-1)+7 chia hết cho 2n-1
=>7 chia hết cho 2n-1
\(\Rightarrow2n-1\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow2n\in\left\{-6;0;2;8\right\}\)
\(\Rightarrow n\in\left\{-3;0;1;4\right\}\)
b,n2-7 chia hết cho n+3
=>n2+3n-(3n+7) chia hết cho n+3
=>n(n+3)-(3n+9-2) chia hết cho n+3
=>n(n+3)-3(n+3)+2 chia hết cho n+3
=>(n-3)(n+3)+2 chia hết cho n+3
=>2 chia hết cho n+3
\(\Rightarrow n+3\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow n\in\left\{-5;-4;-2;-1\right\}\)
n2+9n+7 là bội của n+2
=> n2+9n+7 chia hết cho n+2
=> n2+2n+7n+7 chia hết cho n+2
Vì n2+2n chia hết cho n+2
=> 7n+7 chia hết cho n+2
=> 7n+14-7 chia hết cho n+2
Vì 7n+14 chia hết cho n+2
=> -7 chia hết cho n+2
=> n+2 thuộc Ư(-7)
KL: n thuộc....................