Tìm tất cả các số nguyên x:y (x<y), biết\(2008^2+x^2=2007^2+y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt quen thuộc \(\frac{m^2}{a}+\frac{n^2}{b}\ge\frac{\left(m+n\right)^2}{a+b}\left(a;b>0\right)\)đc
\(9=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)
\(\Rightarrow x+y\le9\)
Giả sử \(x\ge y\)thì \(2y\le x+y\le9\)
\(\Rightarrow y\le\frac{9}{2}=4,5\)
Mà y nguyen dương nên \(y\in\left\{1;2;3;4\right\}\)
Với y = 1 ; 2; 3 ; 4 thì x = ...
Tương tự vs trường hợp x < y ta cũng thu đc đáp án như vậy
Vậy ......
Nếu x hoặc y =1;2;3;4 thì sẽ ra rất nhiều nghiệm nhận loại sao
a) Từ x - y = 2(x + y) = x : y
x - y = 2(x + y)
=> x - y = 2x + 2y
=> x = -3y
=> => x : y = - 3
Khi đó 2(x + y) = - 3
=> x + y = -1,5 (1)
=> x - y = -3 (2)
Từ (1) (2) => x = [(-1,5) + (-3)] : 2 = -2,25
=> y = -1,5 - (-2,25) = 0,75
Vậy x = -2,25 ; y = 0,75
b) Từ x + y = x.y = x : y (1)
=> xy = x : y
=> \(xy=\frac{x}{y}\Rightarrow y=\frac{x}{y}:x\Rightarrow y=\frac{1}{y}\Rightarrow y^2=1\Rightarrow y=\pm1\)
Từ (1) => x + y = xy
TH1 : Nếu y = 1
=> x + 1 = x
=> 0x = 1 (loại)
TH2 : Nếu y = -1
=> x - 1 = -x
=> 2x = 1
=> x = 0,5 (tm)
Vây y = - 1 ; x = 0,5
ĐK: y khác 0
Từ x - y = 2*(x + y) => x = -3y => x:y = -3
Nên -3y - y = -3 => y = 3/4; x = -9/4
Xét x - y = 2. (x + y)
=> x - y = 2x + 2y => x - 2x = 2y + y => -x = 2y (1)
Xét x - y = x : y
=> =[y + (-x)] = x : y => -(y + 2y) = x : y => -3y = x : y => x = -3y2 => -x = 3y2 (2)
Từ (1) và (2) => 2y = 3y2 <=> y = 0
Mà y khác 0 vì y là số chia trong x : y
Vậy ko có cặp số x;y nào thỏa mãn đề bài
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)
Vì \(ƯCLN\left(x,y\right)=15\)nên ta đặt \(x=15a,y=15b;\left(a,b\right)=1\).
\(x+y=15a+15b=15\left(a+b\right)=60\Leftrightarrow a+b=4\)
mà \(\left(a,b\right)=1\)nên ta có bảng giá trị:
a | 1 | 3 |
b | 3 | 1 |
x | 15 | 45 |
y | 45 | 15 |
xy+3x-2y=11\(\Rightarrow\)x(y+3)-2y-6=11-6=5.
\(\Rightarrow\)x(y+3)-(2y+6)=x(y+3)-2(y+3)=(x-2)(y+3)=5=1.5=5.1=(-1).(-5)=(-5)(-1).
\(\Rightarrow\)Có 4 cặp số.
pt <=> \(\left(x-y\right)\left(x+y\right)=\left(2007-2008\right)\left(2007+2008\right)\)
<=> \(\left(x-y\right)\left(x+y\right)=\left(-1\right).4015\)
Do x < y => x - y < 0
Vậy \(\hept{\begin{cases}x-y=-1\\x+y=4015\end{cases}\Leftrightarrow\hept{\begin{cases}x=2007\\y=2008\end{cases}}}\)