K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

Gọi J,R lần lượt là giao điểm của AI, AK với BC.

Ta có biến đổi góc:^BAR=^BAH+^HAR=^ACR+^RAC=^ARB vì vậy tam giác ABR cân tại B suy ra BO đồng thời là đường cao

Tương tự thì CO là đường cao khi đó O là trực tâm của tam giác AIK

Vậy ta có đpcm

hình vẽ trong Thống kê hỏi đáp

5 tháng 8 2020

bài 1:

AI _|_ BC tại I => \(\widehat{AIB}=\widehat{AIC}=90^o\)

BD _|_ AC tại D => \(\widehat{ADB}=\widehat{CDB}=90^o\)

xét tam giác AIC và tam giác BDC có \(\hept{\begin{cases}\widehat{AIB}=\widehat{AIC}=90^o\\\widehat{C}chung\end{cases}}\)

=> tam giác AIC đồng dạng với tam giác BCD (g-g)

b) xét tam giác ABC có AI và BD là 2 đường cao cắt nhau tại H => H là trực tâm tam giác ABC

=> CH _|_ AB => H là trực tâm tam giác ABC

xét tam giác CEB và tam giác IAB có: \(\hept{\begin{cases}\widehat{CEB}=\widehat{AIB}=90^o\\\widehat{B}chung\end{cases}\Rightarrow\Delta CEB~\Delta AIB\left(g-g\right)\Rightarrow\frac{CB}{AB}=\frac{EB}{IB}}\)

=> CB.IB=EB.AB (1)

xét tam giác CIH và CEB có \(\hept{\begin{cases}\widehat{CIH}=\widehat{CEB}=90^o\\\widehat{C}chung\end{cases}\Rightarrow\Delta CIH~\Delta CEB\left(g-g\right)\Rightarrow\frac{CI}{CE}=\frac{CH}{CB}}\)

=> CI.CB=CE.CH (2)

từ (1) và (2) => EB.AB+CH.CE=CB.IB+CI.CB

\(\Leftrightarrow BE\cdot BA+CH\cdot CE=\left(IB+IC\right)BC=BC^2\)

\(\Leftrightarrow BE\cdot BA+CH\cdot CE=BC^2\)

bạn vào câu hỏi của Cát Thảo Ngân nha

24 tháng 7 2023

loading...

a) Ta có: ^ABH=^HAC (Cùng phụ với ^BAH) => 1/2^ABH=1/2^HAC => ^EBA=^EAC

^EAC+^BAE=^BAC=900. Mà ^EBA=^EAC => ^EBA+^BAE=900.

Xét tam giác ABE: ^EBA+^BAE=900 => ^AEB=900.

=> Tam giác ABE vuông tại E (đpcm)

b) Gọi M là giao điểm của CJ và AI.

Gọi K là giao điểm của BE và CM.

^ACH=^BAH (Cùng phụ với ^HAC) => 1/2^ACH=1/2^BAH => ^MAB=^ACM

^MAB+^MAC=900 => ^ACM+^MAC=900 => Tam giác AMC vuông tại M.

Xét tam giác AIJ: IE vuông góc AJ, JM vuông góc AI. Mà IE giao JM tại K.

=> K là trực tâm của tam giác AIJ => AK vuông góc IJ.

Xét tam giác ABC: BE là phân giác ^ABC, CM là phân giác ^ACB.

BE giac CM tại K => AK là phân giác ^BAC. Mà AD là phân giác ^BAC.

=> A,K,D thẳng hàng => AD vuông góc với IJ (đpcm)