K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2022

a, Vì MA ; MB là tiếp tuyến đường tròn (O) với A;B là tiếp điểm 

=> ^OAM = ^OBM = 900

Xét tứ giác AMBO có : 

^OAM + ^OBM = 1800

mà 2 góc này đối 

Vậy tứ giác AMBO là tứ giác nt 1 đường tròn (1) 

Xét tứ giác OHMB có : 

^OHM + ^MBO = 1800 

mà 2 góc này đối 

Vậy tứ giác OHMB là tứ giác nt 1 đường tròn (2) 

mà 2 tứ giác cùng chứa tam giác OBM (3) 

Từ (1) ; (2) ; (3) vậy O;A;B;H;M cùng nằm trên 1 đường tròn 

 

1 tháng 2 2022

tau lạy mày nốt đó giải thì giải hết ko giải đc thì thôi

 

21 tháng 4 2020

M H Q O I K P

a.Ta có :MP,MQ là tiếp tuyến của (O)

\(\Rightarrow MP\perp OP,MQ\perp OQ\)

Mà \(OH\perp MH\Rightarrow M,H,O,P\) cùng thuộc đường tròn đường kính MO 

b.Ta có : M,H,Q,O,P cùng thuộc một đường tròn

\(\Rightarrow\widehat{IHQ}=\widehat{IPQ}\)

Mà \(\widehat{HIQ}=\widehat{PIO}\Rightarrow\Delta IPO~\Delta IHQ\left(g.g\right)\)

\(\Rightarrow\frac{IO}{IQ}=\frac{IP}{IH}\Rightarrow IH.IO=IQ.IP\)

c.Ta có :

\(MP,MQ\) là tiếp tuyến của (O)

\(\Rightarrow PQ\perp MO\Rightarrow\widehat{OKI}=\widehat{OHM}\left(=90^0\right)\)

\(\Rightarrow\Delta OKI~\Delta OHM\left(g.g\right)\)

\(\Rightarrow\frac{OK}{OH}=\frac{OI}{OM}\Rightarrow OM.OK=OI.OH\)

Mà \(PK\perp OM,OP\perp MP\Rightarrow OK.OM=OP^2=R^2\)

\(\Rightarrow OI.OH=R^2\Rightarrow OI=\frac{R^2}{OH}\)

Vì \(OH\perp d\) cố định  \(\Rightarrow H\)cố định \(\Rightarrow I\) cố định 

\(\Rightarrow IP.IQ=IO.IH\) không đổi 

d ) Ta có : 

\(\widehat{PMQ}=60^0\Rightarrow\widehat{KOQ}=\widehat{KOP}=60^0\)

 Mà \(OK=\frac{1}{2}OQ=\frac{1}{2}R\)Lại có : \(\widehat{MOQ}=60^0,OQ\perp MQ\Rightarrow\Delta MQO\)là nửa tam giác đều\(\Rightarrow MO=2OQ=2R\Rightarrow MK=OM-OK=\frac{3}{2}R\)\(\Rightarrow\frac{S_{MPQ}}{S_{OPQ}}=\frac{\frac{1}{2}MK.PQ}{\frac{1}{2}OK.PQ}=\frac{MK}{OK}=\frac{3}{4}\)
16 tháng 8 2019

O M A B d H I K

a) MA và MB là hai tiếp tuyến từ M đến (O) nên MA = MB => OM là trung trực của AB

=> OM vuông góc AB (tại K) => ^OKI = ^OHM = 900 => \(\Delta\)OKI ~ \(\Delta\)OHM (g.g)

Vậy OI.OH = OK.OM (đpcm).

b) Áp dụng hệ thức lượng trong tam giác vuông có: OI.OH = OK.OM = OA2 = R2 (Không đổi)

Vì d cố định, O cố định nên khoảng cách từ O tới d không đổi hay OH không đổi

Do vậy \(OI=\frac{R^2}{OH}=const\)=> Đường tròn (OI) cố định

Mà K thuộc (OI) (vì ^OKI nhìn đoạn IO dưới góc 900) nên K di chuyển trên (OI) cố định (đpcm).

19 tháng 8 2019

const là gì mình chưa biết ban giải thích cái đó được không?

Giải chi tiết:

1)               Xét tứ giác OMHQ có ˆOQM=900OQM^=900(MQ là tiếp tuyến của (O))

                                     ˆOHM=900OHM^=900 (OH ⊥ d)

Vậy tứ giác OMHQ nội tiếp (Tứ giác có hai góc nội tiếp bằng nhau)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB và MA=MB

MO là phân giác của góc AMB

=>\(\widehat{AMO}=\dfrac{\widehat{AMB}}{2}=\dfrac{60^0}{2}=30^0\)

Xét ΔOAM vuông tại A có \(tanAMO=\dfrac{OA}{AM}\)

=>\(\dfrac{6}{AM}=tan30=\dfrac{\sqrt{3}}{3}\)

=>\(AM=6\cdot\dfrac{3}{\sqrt{3}}=6\sqrt{3}\left(cm\right)\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

=>\(\widehat{MBA}=60^0\)

Gọi bán kính đường tròn nội tiếp ΔMAB là d

Diện tích tam giác MBA là:

\(S_{MBA}=\dfrac{1}{2}\cdot MA\cdot MB\cdot sinAMB\)

\(=\dfrac{1}{2}\cdot6\sqrt{3}\cdot6\sqrt{3}\cdot sin60=27\sqrt{3}\left(cm^2\right)\)

Nửa chu vi tam giác MBA là:

\(p=\dfrac{6\sqrt{3}+6\sqrt{3}+6\sqrt{3}}{2}=3\sqrt{3}\left(cm\right)\)

Xét ΔMBA có \(S_{MBA}=p\cdot d\)

=>\(d=\dfrac{27\sqrt{3}}{3\sqrt{3}}=9\left(cm\right)\)

24 tháng 8 2019

M P Q O H I K

a) Ta thấy OM là trung trực của PQ => OM vuông góc PQ => ^OKI = ^OHM = 900

=> \(\Delta\)OKI ~ \(\Delta\)OHM (g.g) => OH.OI = OK.OM (đpcm).

b) Áp dụng hệ thức lượng trong tam giác vuông có: OH.OI = OK.OM = OP2 = R2

Vì d,O đều cố định nên khoẳng cách từ O tới d không đổi hay OH không đổi

Vậy \(OI=\frac{R^2}{OH}=const\). Mà tia OI cố định nên I cố định (đpcm).