K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)

Để B là số nguyên

\(\Rightarrow\frac{3}{n-3}\in z\)

\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)

nếu n -3 = 3 => n= 6 (TM)

       n- 3 = - 3 => n = 0 (TM)

      n -3 = 1 => n = 4 (TM)

    n -3 = -1 => n = 2 (TM)

KL: \(n\in\left(6;0;4;2\right)\)

b) đề như z pải ko bn!

ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)

Để C là số nguyên

\(\Rightarrow\frac{16}{n+7}\in z\)

\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)

rùi bn  thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)

Bài 1: 

a: Để A là phân số thì n+1<>0

hay n<>-1

b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-2;4;-6\right\}\)

8 tháng 2 2018

Ta có: D = \(\frac{2n+6+1}{n+3}\)

              = \(\frac{2\left(n+3\right)+1}{n+3}\)

             = 2 + \(\frac{1}{n+3}\)

Vì 2 nguyên nên để D nguyên thì \(\frac{1}{n+3}\)\(\in\)Z

                                              \(\Rightarrow\)n + 3 \(\in\)Ư(1)                       (vì n  \(\in\)Z)

                                              \(\Rightarrow\orbr{\begin{cases}n+3=1\\n+3=-1\end{cases}}\)

                                              \(\Rightarrow\)\(\orbr{\begin{cases}n=-2\\n=-4\end{cases}}\)

Vậy.....

                                                                

21 tháng 3 2017

Để 3n+2/n-1 có giá trị là số nguyên

=>3n+2 chia hết cho n-1

=>(3n+2)-(n-1) chia hết cho n-1

=>(3n+2)-3(n-1) chia hết cho n-1

=>(3n+2)-(3n-1) chia hết cho n-1

=> 3n+2 - 3n -1 chia hết cho n-1

=>1 chia hết cho n-1

=> n=0;2

hok tốt nha

21 tháng 3 2017

=>3n+2chia hết cho n-1

n-1chia hết cho n-1

3n-1chia hết cho n-1

3n+2-3n-1 chia hết cho n-1

(3n-3n)+(2-1) chia hết cho n-1

0+1 chia hết cho n-1

1 chia hết cho n-1

=>n-1 thuộc Ư(1)

mà Ư(1)={-1;+1}

Lập bảng

n-1-1+1
n02
đánh giáthuộc Zthuộc Z

=>n={0;2} để n-1 thỏa mãn điều kiện

21 tháng 8 2016

co rat nhieu gia tr\i
 

Có vô số số hạng

26 tháng 3 2017

a) Để A = \(\frac{n+1}{n-3}\) là phân số thì \(n-3\ne0\)hay\(n\ne3\)

b) Để A là số nguyên thì:

 \(n+1⋮n-3\)

mà \(n-3⋮n-3\)

\(\Rightarrow\left(n+1\right)-\left(n-3\right)⋮n-3\) hay\(4⋮n-3\)

\(\Rightarrow n-3\inƯ_{\left(4\right)}\)

\(\Rightarrow n\in\){4;2;5;1;7;-1}

để P thuộc Z =>2n+1 chia hết cho n+5

=>2n+10-9 chia hết cho n+5

=>2(n+5)-9 chia hết cho n+5

=>9 chia hết cho n+5

\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)

\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)