K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Xem E là ảnh của A qua phép quay tâm B, góc 90 ο  . Khi A chạy trên nửa đường tròn (O), E sẽ chạy trên nửa đường tròn (O') là ảnh của nửa đường tròn (O) qua phép quay tâm tâm B, góc 90 ο  .

a: 

ΔABC vuông tại A có AB=AC

nên ΔABC vuông cân tại A

=>góc ABC=góc ACB=45 độ

góc BDA=1/2*sđ cung BA=90 độ

góc EAC=1/2*sđ cung CA=90 độ

BD vuông góc DA

CE vuông góc AE

mà D,A,E thẳng hàng

nên BD//CE

Xét tứ giác BDEC có

góc BDE+góc DEC+góc DBC+góc ECB=360 độ

=>góc DBC+góc ECB=180 độ

=>góc ECA+góc ACB+góc ABD+góc ABC=180 độ

=>góc ECA+góc ABD=90 độ

góc EAC+góc ECA=90 độ

mà góc DBA+góc ECA=90 độ

nên góc EAC=góc DBA

Xét ΔACE vuông tại E và ΔBAD vuông tại D có

AC=AB

góc EAC=góc DBA

=>ΔACE=ΔBAD

=>AD=CE

b: AD^2+AE^2

=CE^2+AE^2

=AC^2=16

28 tháng 8 2023

bạn học thầy nguyên à?

24 tháng 5 2017

Xem E là ảnh của A qua

Phép dời hình và phép đồng dạng trong mặt phẳng

29 tháng 1 2021

a) Ta có  AD là đường cao của △ABC (gt) 

=> AD⊥BC => \(\widehat{CDA} = 90^o\)

Tương tự ta có \(\widehat{CEB}=90^o \)

Tứ giác CEHD có : \(\widehat{CDA} + \widehat{CEB} = 90^o + 90^o = 180^o \) => Tứ giác CEHD là tứ giác nội tiếp => 4 điểm C,H,D,E cùng thuộc 1 đường tròn 

b) △AEH và △ADC , có  

\(\begin{cases} \widehat{AEH}=\widehat{ADC}=90^o\\ \widehat{CAD} ( góc chung ) \end{cases} \)=> △AEH đồng dạng với △ADC ( g.g) 

=> \(\dfrac{AE}{AD}=\dfrac{AH}{AC} \) ( tỉ số đồng dạng ) => AE.AC = AH.AD (1)

Ta có \(\widehat{AFC} = 90^o \) ( góc nội tiếp chắn nửa đường tròn ) 

△AFC vuông tại F , có FE là đường cao ( BF ⊥ AC tại E ) => \(AF^2\) = AE.AC ( hệ thức lượng ) (2) 

Từ (1) và (2) => \(AF^2= AH.AD\)

Bài 12. Cho nửa đường tròn (O) đường kính AB = 2R và dây cung AC = R.  Gọi K là trung điểm của dây cung CB, qua B dựng tiếp tuyến Bx với (O) cắt tia OK tại D.a) Chứng minh rằng : \(\Delta\)ABC vuông.                                                            b) Chứng minh rằng : DC là tiếp tuyến của đường tròn (O).                                c) Tia OD cắt  (O) tại M. Chứng minh rằng : Tứ giác OBMC là hình thoi .               d) Vẽ...
Đọc tiếp

Bài 12. Cho nửa đường tròn (O) đường kính AB = 2R và dây cung AC = R.  Gọi K là trung điểm của dây cung CB, qua B dựng tiếp tuyến Bx với (O) cắt tia OK tại D.

a) Chứng minh rằng : \(\Delta\)ABC vuông.                                                            

b) Chứng minh rằng : DC là tiếp tuyến của đường tròn (O).                                

c) Tia OD cắt  (O) tại M. Chứng minh rằng : Tứ giác OBMC là hình thoi .               

d) Vẽ CH vuông góc với AB tại H và gọi I là trung điểm của cạnh CH. Tiếp tuyến tại A của đường tròn (O) cắt tia BI tại E. Chứng minh rằng ba điểm E, C, D thẳng hàng.     

1

a) Xét (O) có

ΔBAC nội tiếp đường tròn(B,A,C\(\in\)(O))

AB là đường kính(gt)

Do đó: ΔABC vuông tại C(Định lí)

6 tháng 4 2016

c) ACB=60 =>ACO đều => S ACO = 5 căn 3

S hình quạt AOC=(pi*5^2*60)/180

6 tháng 4 2016

d) vì BC không đổi => S ABC max khi đường cao hạ từ A max => khi A chính giữa nữa dg tròn