K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

\(\sqrt{\frac{a}{1-a}}=\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)(BĐT Cosi)

Tương tự \(\sqrt{\frac{b}{1-b}}\ge\frac{2b}{a+b+c}\) và \(\sqrt{\frac{c}{1-c}}\ge\frac{2c}{a+b+c}\)

\(\Rightarrow\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra \(\Leftrightarrow a=b+c;b=a+c;c=a+b\Rightarrow a+b+c=0\) (KTM)

Vậy \(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)

NV
18 tháng 4 2021

Ta chứng minh BĐT phụ sau:

\(\dfrac{a^3}{a^2+b^2}\ge\dfrac{2a-b}{2}\)

Thật vậy, BĐT tương đương:

\(2a^3-\left(2a-b\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow b\left(a-b\right)^2\ge0\) (luôn đúng với a;b dương)

Tương tự: \(\dfrac{b^3}{b^3+c^3}\ge\dfrac{2b-c}{2}\) ; \(\dfrac{c^3}{c^3+a^3}\ge\dfrac{2c-a}{2}\)

Cộng vế với vế:

\(VT\ge\dfrac{a+b+c}{2}=3\) (đpcm)

NV
5 tháng 10 2021

Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)

\(\Rightarrow VT=\dfrac{1}{\dfrac{y}{x}\left(\dfrac{z}{y}+1\right)}+\dfrac{1}{\dfrac{z}{y}\left(\dfrac{x}{z}+1\right)}+\dfrac{1}{\dfrac{x}{z}\left(\dfrac{y}{x}+1\right)}\)

\(VT=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)

\(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\dfrac{3}{2}\)

24 tháng 8 2019

Ta có 12 ≥ ( a + b ) 3 + 4 a b ≥ 2 a b 3 + 4 a b . Đặt t = a b , t > 0  thì

12 ≥ 8 t 3 + 4 t 2 ⇔ 2 t 3 + t 2 − 3 ≤ 0 ⇔ ( t − 1 ) ( 2 t 2 + 3 t + 3 ) ≤ 0  

Do 2 t 2 + 3 t + 3 > 0 , ∀ t nên t − 1 ≤ 0 ⇔ t ≤ 1 . Vậy 0 < a b ≤ 1  

Chứng minh được 1 1 + a + 1 1 + b ≤ 2 1 + a b , ∀ a , b > 0  thỏa mãn a b ≤ 1  

Thật vậy, BĐT 1 1 + a − 1 1 + a b + 1 1 + b − 1 1 + a b ≤ 0  

a b − a ( 1 + a ) ( 1 + a b ) + a b − b ( 1 + b ) ( 1 + a b ) ≤ 0 ⇔ b − a 1 + a b a 1 + a − b 1 + b ⇔ ( b − a ) 2 ( a b − 1 ) ( 1 + a b ) ( 1 + a ) ( 1 + b ) ≤ 0  

 

Do 0 < a b ≤ 1  nên BĐT này đúng

Tiếp theo ta sẽ CM 2 1 + a b + 2015 a b ≤ 2016 , ∀ a , b > 0  thỏa mãn  a b ≤ 1

Đặt t = a b , 0 < t ≤ t  ta được 2 1 + t + 2015 t 2 ≤ 2016  

2015 t 3 + 2015 t 2 − 2016 t − 2014 ≤ 0 ⇔ ( t − 1 ) ( 2015 t 2 + 4030 t + 2014 ) ≤ 0  

BĐT này đúng  ∀ t : 0 < t ≤ 1  

Vậy  1 1 + a + 1 1 + b + 2015 a b ≤ 2016.  Đẳng thức xảy ra a = b = 1

NV
5 tháng 8 2021

\(abc=1\) nên tồn tại các số dương x;y;z sao cho \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

BĐT cần chứng minh tương đương:

\(\dfrac{y}{x+2y}+\dfrac{z}{y+2z}+\dfrac{x}{z+2x}\le1\)

\(\Leftrightarrow\dfrac{2y}{x+2y}-1+\dfrac{2z}{y+2z}-1+\dfrac{2x}{z+2x}-1\le2-3\)

\(\Leftrightarrow\dfrac{x}{x+2y}+\dfrac{y}{y+2z}+\dfrac{z}{z+2x}\ge1\)

Điều này đúng do:

\(VT=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2yz}+\dfrac{z^2}{z^2+2xz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)

5 tháng 8 2021

e cảm ơn ạ

 

21 tháng 4 2021

Đặt \(A=\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\left(a,b,c>0\right)\).

Ta có:

\(\frac{a^3}{a^2+b^2}=\frac{a\left(a^2+b^2-b^2\right)}{a^2+b^2}=\frac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\).

Vì \(a,b>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+b^2\ge2ab\).

\(\Rightarrow\frac{1}{a^2+b^2}\le\frac{1}{2ab}\).

\(\Leftrightarrow\frac{ab^2}{a^2+b^2}\le\frac{ab^2}{2ab}=\frac{b}{2}\).

\(\Rightarrow\frac{-ab^2}{a^2+b^2}\ge\frac{-b}{2}\).

\(\Leftrightarrow a-\frac{ab^2}{a^2+b^2}\ge a-\frac{b}{2}\).

\(\Leftrightarrow\frac{a^3}{a^2+b^2}\ge a-\frac{b}{2}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a=b>0\).

Chứng minh tương tự, ta được:

\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\).với \(b,c>0\)\(\left(2\right)\)

Dấu bẳng xảy ra \(\Leftrightarrow b=c>0\).

Chứng minh tương tự, ta được:

\(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)với \(a,c>0\)\(\left(3\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a=c>0\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\)\(\ge\)\(a+b+c-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}\).

\(\Leftrightarrow A\ge\frac{a+b+c}{2}\).

\(\Leftrightarrow A\ge\frac{6}{2}\)(vì \(a+b+c=6\)).

\(\Leftrightarrow A\ge3\)(điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\a+b+c=6\end{cases}}\Leftrightarrow a=b=c=2\).

Vậy nếu \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c=6\)thì:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge3\).

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
Áp dụng BĐT AM-GM:

$\text{VT}=\sqrt{ab+c(a+b+c)}+\sqrt{bc+a(a+b+c)}+\sqrt{ca+b(a+b+c)}$

$=\sqrt{(c+a)(c+b)}+\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}$
$\leq \frac{c+a+c+b}{2}+\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}$

$=2(a+b+c)=2$
Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$