\(\left(\frac{242}{363}+\frac{1616}{2121}\right)=\frac{2}{7}\cdot\frac{2015}{A}\)Tìm A biết:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
( 4x - 9 ) ( 2,5 + (-7/3) . x ) = 0
\(\Rightarrow\orbr{\begin{cases}4x-9=0\\2,5+\frac{-7}{3}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{15}{14}\end{cases}}\)
P/s: đợi xíu làm câu b
b) \(\frac{1}{x\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{-1}{x+3}=\frac{1}{2015}\)
\(\Leftrightarrow x+3=-2015\)
\(\Leftrightarrow x=-2018\)
Vậy,.........
b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)
242/363 + 1616/ 2121= 5/7 x y
\(\frac{2}{3}+\frac{16}{21}=\frac{5}{7}\)x y
\(\frac{14}{21}\)+\(\frac{16}{21}\)= \(\frac{5}{7}\)x y
\(\frac{10}{7}\)=\(\frac{5}{7}\)x y
\(\frac{10}{7}\): \(\frac{5}{7}\)=y
\(\frac{10}{7}\)x \(\frac{7}{5}\)=y
2=y
vậy y=2
\(\frac{242}{363}+\frac{1616}{2121}=\frac{5}{7}\times y\)
\(\frac{121\times2}{121\times3}+\frac{101\times16}{101\times21}=\frac{5}{7}\times y\)
\(\frac{2}{3}+\frac{16}{21}=\frac{5}{7}\times y\)
\(\frac{10}{7}=\frac{5}{7}\times y\)
\(\Rightarrow y=\frac{10}{7}:\frac{5}{7}\)
\(y=2\)
242/363 + 1616/2121 = 2/7 x a
10/7 = 2/7 x a
a = 10/7 : 2/7
a = 5
\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{9}{1}+\frac{8}{2}+...+\frac{1}{9}\)
=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10-1}{1}+\frac{10-2}{2}+...+\frac{10-9}{9}\)
=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10}{1}-1+...+\frac{10}{9}-1\)
=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10-9+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}\)= \(\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}\)
=>\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
=> \(x=10\)
b) Tương tự câu a
=> 10/7 = 2/7 . x
=> 2/7 . x = 10/7
=> x = 10/7 : 2/7
=> x = 5
\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)
\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)
\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)
Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:
\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)
\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)
\(\frac{242}{363}+\frac{1616}{2121}=\frac{2}{7}.\frac{2015}{A}\)
\(\frac{11.11.2}{11.11.3}+\frac{101.16}{101.21}=\frac{2}{7}.\frac{2015}{A}\)
\(\frac{2}{3}+\frac{16}{21}=\frac{2}{7}.\frac{2015}{A}\)
\(\Rightarrow\frac{2}{7}.\frac{2015}{A}=\frac{10}{7}\)
\(\frac{2015}{A}=\frac{10}{7}:\frac{2}{7}\)
\(\frac{2015}{A}=5\)
\(A=2015:5\)
\(A=403\)
\(\left(\frac{242}{363}+\frac{1616}{2121}\right)=\frac{2}{7}.\frac{2015}{A}\)
\(\Leftrightarrow\left(\frac{2}{3}+\frac{16}{21}\right)=\frac{2}{7}.\frac{2015}{A}\)
\(\Leftrightarrow\frac{10}{7}=\frac{2}{7}.\frac{2015}{A}\)
\(\Leftrightarrow5=\frac{2015}{A}\)
\(\Leftrightarrow A=403\)