Cho tam giác ABC cân tại A. M là trung điểm BC, Lấy D và E lần lượt thuộc cạnh AB,AC sao cho góc MDB=gócCME
a)CM:BM^2=BD.CE
b)CM:tam giác MDE đồng dạng tam giác BDM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>BDEC là hình thang
mà góc B=góc C
nên BDEC là hình thang cân
b: Xét ΔDEB có
N là trung điểm của DE
M là trung điểm của DB
Do đó: MN là đường trung bình
=>MN//EB và MN=EB/2(1)
Xét ΔECB có
P là trung điểm của EC
Q là trung điểm của BC
Do đó: PQ là đường trung bình
=>PQ//BE và PQ=BE/2(2)
từ (1) và (2) suy ra MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔDEC có
N là trung điểm của DE
P là trung điểm của EC
Do đó: NP là đường trung bình
=>NE=DC/2=NM
=>NMQP là hình thoi
a) \(\frac{MB}{EC}=\frac{DB}{MC}\)
\(\Leftrightarrow MB.MC=EC.DB\)
Mà tg ABC cân tại A => MC = MB
=> \(BM^2=BD.CE\)(đpcm)
b) Xét tg MDE và BDM
\(\widehat{MDE}=\widehat{BDM}\)(gt)
\(\widehat{MDB}=\widehat{EDM}\)(gt)
\(\Rightarrow\Delta MDE~\Delta BDM\)
a) \(\widehat{MDB}=\widehat{CME}\left(gt\right)\)
\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta DBM;\Delta MCE\left(g.g\right)\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\)hay \(\frac{BM}{CE}=\frac{BD}{BM}\)(M là trung điểm BC)
\(\Rightarrow BM^2=BD.CE\)
b) \(\widehat{BMD}=\widehat{MEC}\)( \(\Delta DBM\)và \(\Delta MCE\)đồng dạng)
Mà BME là góc ngoài tam giác MEC
=> \(\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{MCE}=\widehat{BMD}+\widehat{MCE}\)
\(\Rightarrow\widehat{DME}=\widehat{MCE}=\widehat{MBA}\left(1\right)\)
Từ \(\Delta BDM;\Delta MCE\left(g.g\right)\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\)hay \(\frac{DM}{ME}=\frac{MC}{CE}\left(2\right)\)
Từ (1) và (2) => \(\Delta DME\Delta MCE\left(c.g.c\right)\)
Mà \(\Delta DBM\Delta MCE\left(g.g\right)\Rightarrow\Delta DBM~\Delta DME\)