K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

Ta có: \(\left(b+c+d\right)^2=b^2+c^2+d^2+2\left(ab+bc+ca\right)\le3\left(b^2+c^2+d^2\right)\) 

Thay giả thiết vào ta có: 

\(\left(7-a\right)^2\le3\left(13-a^2\right)\Leftrightarrow4a^2-14a+10\le0\Rightarrow1\le a\le\frac{5}{2}\) 

Vậy Min a=1 khi b=c=d=2

      Max a=5/2 khi b=c=d=3/2

20 tháng 5 2016

a) Nếu p=3 thì \(2^p+p^2=2^3+3^2=17\) là số nguyên tố

Nếu \(p\ge5\) thì \(2^p+p^2=\left(2^p+1\right)+\left(p^2-1\right)=\left(2^p+1\right)+\left(p-1\right)\left(p+1\right)\)

Khi p là số nguyên tố , \(p\ge5\)=> p lẻ và p không chia hết cho 3; do đó: \(\left(2^p+1\right)\)chia hết cho 3 và (p-1)(p+1) chia hết cho 3 \(\Rightarrow\left(2^p+p^2\right)\)chia hết cho 3 \(\Rightarrow p^2+2^p\)không là số nguyên tố

Khi p=2, ta có : \(2^p+p^2=2^2+2^2=8\)là hợp số

Vậy duy nhất có p=3 thỏa mãn.

b) \(a+b+c+d=7\Rightarrow b+c+d=7-a\Rightarrow\left(b+c+d\right)^2=\left(7-a\right)^2\)

Mặt khác: \(\left(b+c+d\right)^2\le3\left(b^2+c^2+d^2\right)\Rightarrow\left(7-a\right)^2\le3\left(13-a^2\right)\) 

Lại có : \(\left(7-a\right)^2\le3\left(13-a^2\right)\Leftrightarrow49-14a+a^2\le39-3a^2\Leftrightarrow4a^2-14a+10\le0\)

Giải ra được : \(1\le a\le\frac{5}{2}\)

Vậy : a có thể nhận giá trị lớn nhất là \(\frac{5}{2}\), nhận giá trị nhỏ nhất là 1

23 tháng 4 2016

nếu p=2 loại

p=3 thỏa mãn

p>3 thì p lẻ và k chia hết cho 3

nên p2 chia 3 dư 1

2 đồng dư với -1 mod 3 vì p lẻ nên 2p đồng dư vs -1 mod 3

do đó p2+2p chia hết cho 3 mà nó lớn hơn 1 nên là hợp số

vậy p=3

2 tháng 10 2019

\(a^2+b^2+c^2+d^2=13\)

\(\Rightarrow a^2\le13\)

\(\Leftrightarrow a\le\sqrt{13}\approx3,61\) (1)

Lại có \(a+b+c+d=7\)

\(\Leftrightarrow a\le7\) (2)

Từ (1) và (2) \(\Rightarrow a_{max}=3\).

3 tháng 7 2017

http://imgur.com/O0UaOOL
Đã giải tại . 

3 tháng 7 2017

\(\left(7-d\right)^2=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=3\left(13-d^2\right)\)

=>\(4d^2-14d+10\le0\)

=>\(\left(d-1\right)\left(4d-10\right)\le0\)

=>\(1\le d\le\frac{5}{2}\).Làm tương tự đối với a,b,c

15 tháng 10 2015

Giả sử abcd0

Ta có S =|a-b|+|b-c|+|c-d|+|a-c|+|a-d|+|b-d|

=> S = a – b + b – c + c – d + a – c + a – d + b – d  

=> S = 3a + b – (c + 3d)

Mà c + 3d 0 => S3a + b

Mặt khác a + b + c + d = 1 => a  1.  

Suy ra S = 3a + b = 2a + a + b  2.1 + 1 = 3

              c+3d=0

Dấu bằng xảy ra khi a+b+c+d=1

                                                    } <=>{a=1b=c=d=0 

                                       a=1

Vậy S lớn nhất bằng 3 khi trong bốn số a, b, c, d có một số bằng 1 còn ba số bằng 

8 tháng 4 2016

tl rõ rõ cía

12 tháng 2 2022

Giúp mình bài này với ah.

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$a^3+a^3+1\geq 3a^2$

$b^3+b^3+1\geq 3b^2$

$c^3+c^3+1\geq 3c^2$

$\Rightarrow 2(a^3+b^3+c^3)+3\geq 3(a^2+b^2+c^2)$

$\Leftrightarrow 2P+3\geq 9$

$\Leftrightarrow P\geq 3$

Vậy $P_{\min}=3$ khi $(a,b,c)=(1,1,1)$

----------------

Tìm max:

$a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2\leq 3$

$\Rightarrow a,b,c\leq \sqrt{3}$

Do đó: $a^3-\sqrt{3}a^2=a^2(a-\sqrt{3})\leq 0$

$\Rightarrow a^3\leq \sqrt{3}a^2$

Tương tự với $b,c$ và cộng theo vế:

$P\leq \sqrt{3}(a^2+b^2+c^2)=3\sqrt{3}$
Vậy $P_{\max}=3\sqrt{3}$ khi $(a,b,c)=(\sqrt{3},0,0)$ và hoán vị.