tìm giá trị nhỏ nhất của biểu thức
A= ( x-11)^2 +2015
B= -2018 + (x-1)^2+|x+y|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(\left|x-y\right|+\left|x+1\right|\ge0\)với mọi x,y
\(\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\)với mọi x,y
dấu = sảy ra <=>\(\left|x-y\right|+\left|x+1\right|=0\)mà \(\left|x-y\right|\ge0 VS \left|x+1\right|\ge0\)=>\(\left|x-y\right|=0 VS \left|x+1\right|=0\Leftrightarrow x-y=0 VS x+1=0\Leftrightarrow x=-1 VS y=-1\)
Ta có :
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(2018-\left(x-1\right)^2\le2018\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
Vậy GTLN của biểu thức \(2018-\left(x-1\right)^2\) là \(2018\) khi \(x=0\) hoặc \(x=2\)
Chúc bạn học tốt ~
Ta có :
\(\left|x-5\right|\ge5\)
\(\Rightarrow\)\(\left|x-5\right|+120\ge120\)
Dấu "=" xảy ra khi và chỉ khi \(\left|x-5\right|=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
Vậy GTNN của biểu thức \(\left|x-5\right|+120\) là \(120\) khi \(x=5\)
Chúc bạn học tốt ~
1)a Ta có: \(A=\left|x+19\right|+\left|y-5\right|+1890\)
\(\hept{\begin{cases}\left|x+19\right|\ge0\\\left|y-5\right|\ge0\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890}\)
Vậy giá trị A nhỏ nhất = 1890 <=> x=-19; y= 5
2) a. \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=2019\)
\(\left(1+3+5+...+99\right)+\left(x+x+x+...+x\right)=2019\)
Rồi bn tính tổng của dãy số cách đều nha. Công thức: (Số cuối+ Số đầu). Số số hạng: 2
3) Ta có: \(A^2=b\left(a-c\right)-c\left(a-b\right)\)
\(A^2=ab-bc-ac+bc\)
\(A^2=\left(-bc+bc\right)+\left(ab-ac\right)\)
\(A^2=0+a\left(b-c\right)\)
\(A^2=-20.\left(-5\right)=100\)
\(\Rightarrow A=10\)
Chúc bạn năm mới vui vẻ nha! Happy new year !
1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất.
mà \(\left|x-2016\right|+2018\ge2018\)
Dấu \(=\)khi \(x=2016\).
Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).
2) \(x-2xy+y=0\)
\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)
Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).
Ta có \(\left(x-2\right)^{2016}\ge0\)với mọi giá trị của x
\(\left(2y-1\right)^{2018}\ge0\)với mọi giá trị của x
=> \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}\ge0\)với mọi giá trị của x
=> \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}+1\ge1\)với mọi giá trị của x
=> Amin = 1 khi và chỉ khi \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}=0\)
Ta lại có \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}=0\)
=> \(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy khi x = 2 và \(y=\frac{1}{2}\)thì \(A=\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}+1\)đạt GTNN là 1.
A = ( x-2)2016 + (2y-1)2018 + 1
Ta có : ( x-2)2016\(\ge\)0
(2y-1)2018\(\ge\)0
\(\Rightarrow\) ( x-2)2016 + (2y-1)2018 + 1\(\ge\)1
\(\Rightarrow\)A\(\ge\)1 \(\Rightarrow\)Min(A)=1
\(\Rightarrow\)\(\orbr{\begin{cases}\left(X-2\right)^{2016}=0\\\left(2Y-1\right)^{2018}=0\end{cases}}\)
Phần còn lại tự làm bạn nhé !
\(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=2^2=4\forall x\)
Ta có: \(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
\(\left|y+3\right|>=0\forall y\)
Do đó: \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4+0=4\forall x,y\)
=>\(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018>=4+2018=2022\forall x,y\)
=>\(P>=2022\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y+3=0
=>\(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
Bài giải
a) Không tìm được GTLN
Tìm GTNN :
Do \(\left|x-2\right|\ge0\) \(\Rightarrow\text{ }\left|x-2\right|+2019\ge2019\) Dấu " = " xảy ra khi \(\left|x-2\right|=0\)\(\Rightarrow\text{ }x-2=0\text{ }\Rightarrow\text{ }x=2\)
Vậy GTNN của \(\left|x-2\right|+2019\) là 2019
b, GTLN :
Do \(\left|x+1\right|\ge0\text{ }\Rightarrow\text{ }2018-\left|x+1\right|\le2018\) Dấu " = " xảy ra khi \(\left|x+1\right|=0\text{ }\Rightarrow\text{ }x+1=0\text{ }\Rightarrow\text{ }x=-1\)
\(\Rightarrow\text{ }Max\text{ }2018-\left|x+1\right|=2018\)
GTNN không tìm được
c, Quên cách làm rồi !
a) A= |x+2| + 2019
Vì đằng trước |x+2| là dấu "+" nên biểu thức A phải tìm GTNN
Vì |x+2| luôn lớn hơn hoặc bằng 0 (ghi kí hiệu nha), với mọi x
nên |x+2| + 2019 luôn hơn hoặc bằng 2019, với mọi x
Khi dấu "=" xảy ra thì biểu thức A đạt GTNN là 2019
Khi đó: |x+2|=0
=> x+2 =0
=> x=-2
Vậy biểu thức A đạt GTNN là 2019 khi x= -2
b) B= 2018 - |x+1|
Vì đằng trước |x+1| là dấu "-" nên biểu thức B phải tìm GTLN
Vì -|x+1| luôn bé hơn hoặc bằng 0, với mọi x
nên 2018 -|x+1| luôn bé hơn hoặc bằng 0, với mọi x
Khi dấu "=" xảy ra thì biểu thức B đạt GTLN là 2018
Khi đó: |x+1| =0
=> x+1 =0
=> x=-1
Vậy biểu thức B đạt GTLN là 2018 khi x =-1
c) C = |x-3| + |y-2| +2020
Vì đằng trước |x-3| và |y-2| là dấu "+' nên biểu thức C phải tìm GTNN
Vì |x-3| luôn lớn hơn hoặc bằng 0, với mọi x
và |y-2| luôn lớn hơn hoặc bằng 0, với mọi y
=> |x-3| + |y-2| luôn lớn hơn hoặc bằng 0, với mọi x, y
=> |x-3| + |y-2| + 2020 luôn lớn hơn hoặc bằng 2020, với mọi x, y
Khi dấu "=" xảy ra thì biểu thức C đạt GTNN là 2020
Khi đó: |x-3|=0 và |y-2|=0
=> x-3=0 và y-2=0
=> x=3 và y=2
Vậy biểu thức Cđạt GTNN là 2020 khi x=3 và y=2
Ta có : \(\left(x-11\right)^2\ge0\forall x\in R\)
Nên : \(A=\left(x-11\right)^2+2015\ge2015\forall x\)
Do đó : \(A_{max}=2015\) khi x = 11
Ta có : \(\left(x-1\right)^2\ge0\forall x\)
\(\left|x+y\right|\ge0\forall x,y\)
Nên : \(B=-2018+\left(x-1\right)^2+\left|x+y\right|\ge-2018\forall x\)
Vậy \(B_{max}=-2018\) khi x = 1 và y = -1