CMR
\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{35}}>10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta trục căn thức ở mỗi số hạng của A sau đó khử liên tiếp đc : A = 11 - 1 = 10
Ta có : \(B=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+...+\frac{2}{2\sqrt{35}}\)
\(B=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+...+\frac{2}{\sqrt{35}+\sqrt{35}}\)
\(B>2\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{35}+\sqrt{36}}\right)\)
\(B>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)
\(B>2\left(6-1\right)=10\)
Vậy A < B
CMR:
\(A=\frac{\sqrt{2}-1}{2+1}+\frac{\sqrt{3}-2}{3+2}+...+\frac{\sqrt{36}-35}{36+35}< \frac{5}{12}\)
Ta có:
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(...........\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
Cộng theo vế ta có:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\) (Đpcm)
bài này có trong đề thi học kì của mik nè thanks nha mik làm giống hệt bn luôn
Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(VT>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}+\frac{1}{\sqrt{100}}\)
\(=\frac{1}{10}+\frac{1}{10}\) có 100 số hạng
\(=\frac{100}{10}=10\)
Dòng 6 cuối cùng mình làm cũng không được chắc chắn lắm đâu òng 6 đấy bạn ngoặc ở dưới 1/10 +1/10 nhé