K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
20 tháng 6 2021

\(A=a+\frac{2}{a^2}=\frac{1}{2}a+\frac{1}{2}a+\frac{2}{a^2}\ge3\sqrt[3]{\frac{1}{2}a.\frac{1}{2}a.\frac{2}{a^2}}=3\sqrt[3]{\frac{1}{2}}\)

Dấu \(=\)khi \(\frac{1}{2}a=\frac{2}{a^2}\Leftrightarrow a=\sqrt[3]{4}\).

14 tháng 10 2018

a, A = 3x2 + 18x + 33 => 3A = 9x2 + 54x + 99 = (3x)2 + 2.3x.9 + 81 + 18 = (3x + 9)2 + 18

Vì (3x + 9)2 > hoặc = 0 với mọi x => (3x + 9)2 + 18 luôn > 0 => 3A > o với mọi x hây > 0 với mọi x.

b, Ta có 3A = (3x + 9)2 + 18.

Vì (3x + 9)2 > hoặc = 0 với mọi x => (3x + 9)2 + 18 > hoặc = 18

Do đó 3A > hoặc = 18 => A > hoặc = 6.

Dấu = xảy ra <=> (3x + 9)2 = 0

<=> 3(x + 3) = 0

<=> x + 3 = 0

<=> x = -3

Vậy GTNN của A = 6 khi x = -3

27 tháng 1 2023

Ta thay x bằng số -4. Khi đó -4+4=0, mà 0 mũ 2020 thì vẫn bằng 0. 0+17=17. Đáp án: 17

4 tháng 1 2022

\(A=x^2-3x+2\\ \Rightarrow A=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{1}{4}\\ \Rightarrow A=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy \(A_{min}=-\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{2}\)

2 tháng 7 2019

Điều kiện x ≠ 2 và x  ≠  0

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì x - 1 2 ≥ 0 nên x - 1 2 + 2 ≥ 2 với mọi giá trị của x.

Khi đó giá trị nhỏ nhất của biểu thức bằng 2 khi x = 1.

Vậy biểu thức đã cho có giá trị nhỏ nhất bằng 2 tại x = 1.

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

Bài 8:

a: Khi a=1 thì phương trình sẽ là \(\left(1-4\right)x-12x+7=0\)

=>-3x-12x+7=0

=>-15x+7=0

=>-15x=-7

hay x=7/15

b: Thay x=1 vào pt, ta được:

\(a^2-4-12+7=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)

hay \(a\in\left\{3;-3\right\}\)

c: Pt suy ra là \(\left(a^2-16\right)x+7=0\)

Để phương trình đã cho luôn có một nghiệm duy nhất thì (a-4)(a+4)<>0

hay \(a\notin\left\{4;-4\right\}\)

19 tháng 7 2016

a)Áp dụng BĐT bunhiacoxki ta có: \(\left(a^2+b^2\right)\left(1^2+1^2\right)\ge\left(a.1+b.1\right)^2=\left(a+b\right)^2=3^2=9\)

=>\(2\left(a^2+b^2\right)\ge9\Leftrightarrow a^2+b^2\ge\frac{9}{2}\)

Dấu "=" xảy ra khi: a=b

Vậy GTNN của N là 9/2 tại a=b

b)Ta có: \(a^2+b^2\ge\frac{9}{2}\) (câu a)

<=>(a+b)2-2ab\(\ge\frac{9}{2}\)

<=>\(9-2ab\ge\frac{9}{2}\)

<=>\(2ab\le\frac{9}{2}\)

<=>\(ab\ge\frac{9}{4}\)

<=>\(ab+2\le\frac{17}{4}\)

Dấu "=" xảy ra khi a=b

Vậy GTLN của P là 17/4 tại a=b