K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

áp dụng bất đẳng thức cauchy cho hai số dương

\(1+b^2\ge2\sqrt{1\cdot b^2}=2b\)

\(1+c^2\ge2c\)

\(1+a^2\ge2a\)

\(\Rightarrow a\cdot\left(1+b^2\right)+b\cdot\left(1+c^2\right)+c\cdot\left(1+a^2\right)\ge2ab+2bc+2ca\)

17 tháng 9 2017

\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)

\(=\frac{3}{2}\times\frac{4}{3}\times...\times\frac{100}{99}\)

\(=\frac{100}{2}=50\)

17 tháng 9 2017

A = 100/2 = 50

7 tháng 3 2017

\(A=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\left(63.1,2-21.3,6+1\right)}{1-2+3-4+....+99-100}\)

\(=\frac{\frac{100\left(100+1\right)}{2}\left(\frac{3+2-6}{12}\right)\left[63\left(1,2-1,2\right)+1\right]}{\left(1-2\right)+\left(3-4\right)+....+\left(99-100\right)}\)

\(=\frac{5050.\left(-\frac{1}{12}\right).1}{-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)}\)

\(=\frac{2525.\left(-\frac{1}{6}\right)}{-50}=\frac{101}{12}\)

7 tháng 3 2017

101/12 bạn nha

CHÚC BẠN HỌC GIỎI

3 tháng 8 2017

Bạn chứng minh đẳng thức sau nhé:  \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)                                                                                                \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.

Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)

Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Suy ra: x=y=z hay ab=bc=ac hay a=b=c.

Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.


 

30 tháng 8 2016

\(\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right).....\left(1-\frac{1}{2006}\right)\)

\(=\left(\frac{99}{99}-\frac{1}{99}\right).\left(\frac{100}{100}-\frac{1}{100}\right).....\left(\frac{2006}{2006}-\frac{1}{2006}\right)\)

\(=\frac{98}{99}.\frac{99}{100}......\frac{2005}{2006}\)

\(=\frac{98.99.....2005}{99.100....2006}\)

\(=\frac{98}{2006}=\frac{49}{2006}\)

ủng hộ nha ai k mik k lại

23 tháng 9 2016

a) x3 + (a+b+c)x2+ (ab+ac+bc)x +abc

= x3 +ax2+bx2+cx2+abx+acx+bcx+abc

=x3+cx2+abx+abc+ax2+acx+bx2+bcx

=x2 (x+c) + ab (x+c) +ax (x+c) +bx (x+c)

= (x+c) (x2+ab+ax+bx)

= (x+c) { x(x+b)+a(x+b)}

=(x+c) (x+b) (x+a)

28 tháng 7 2017

a) Nếu n chẵn thì n=2k 

( 2k + 10) x ( 2k + 15) = 2k(2k+15) + 10(2k+15) = 2(k+5)(2k+15)

=> \(2\left(k+5\right)\left(2k+15\right)⋮2\)

Nếu n lẻ thì n = 2k+1 

( 2k + 1 + 10) x ( 2k + 1 + 15 ) = 2(x+8)(2x+11) \(⋮\)

Suy ra ( n + 10) x ( n +15) luôn luôn chia hết cho 2