Cho tam giác ABC vuông tại A đường cao AH. HE vuông góc với AB, HF vuông góc với AC Chứng minh rằng 2 lần diện tích tam giác ABC bằng AH mũ 4 chia cho HE nhân HF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
a: Xét tứ giác AEHF có
\(\widehat{FAE}=\widehat{HFA}=\widehat{HEA}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=FE
a, Sử dụng hệ thức giữa cạnh góc vuông và hình chiếu lên cạnh huyền và cạnh huyền trong tam giác vuông HBA và HCA
b, Tương tự a) và áp dụng hệ thức giữa đường cao và hình chiếu cạnh góc vuông lên cạnh huyền trong tam giác vuông ABC
Vì \(AM\perp AH\left(gt\right)\)(1)
và \(BC\perp AH\left(gt\right)\)(2)
Từ(1) và (2)
\(\Rightarrow AM//BC\)(T/c )
Mà \(EF//BC\)(* )
Do \(\widehat{AEF}=\widehat{ABC}\)(do vị trí đồng vị )'
\(\Rightarrow AH\perp EF\)(*)
Mà \(AM\perp AH\left(gt\right)\)(** )
Từ (*) và (** )
\(\Rightarrow AM\perp EF\)
( đpcm)
Gợi ý: A F E ^ = A H E ^ (tính chất hình chữ nhật và A H E ^ = A B H ^ (cùng phụ B H E ^ )
Ta có: \(\widehat{C_1}=\widehat{A_1}\)(cùng phụ với \(\widehat{B_1}\)) \(\left(1\right)\)
Xét tứ giác AEHF có: \(\widehat{A}=\widehat{E}=\widehat{F}=\widehat{H}=90^o\)
=> tứ giác AEHF là h.c.n
=> \(\widehat{A_1}=\widehat{E_1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{E_1}=\widehat{C_1}\)
vì \(\widehat{E_1}+\widehat{BEF}=180^o\)
\(\Rightarrow\widehat{C_1}+\widehat{BEF}=180^o\) mà 2 góc đối nhau
=> tứ giác BEFC nội tiếp