Với giá trị nào của a thì các phương trình sau là phương trình bậc nhất?
a) ax^2 - x +5 = 0
b) (a-1)x^2+ax - 8 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong các phương trình sau phương trình nào là phương trình bậc nhất một ẩn:
A/ x - 1= x + 2
B/(x-1)(x-2)=0
C/ax + b = 0
D/ 2x + 1=3x + 5
A/ x - 1= x + 2
B/(x-1)(x-2)=0
C/ax + b = 0
D/ 2x + 1=3x + 5
Bài 2:
a: \(\Leftrightarrow4x^2\left(ax-3\right)-\left(ax-3\right)=0\)
\(\Leftrightarrow\left(ax-3\right)\left(2x-1\right)\left(2x+1\right)=0\)
Trường hợp 1: a=0
=>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
Trường hợp 2: a<>0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=\dfrac{3}{a}\end{matrix}\right.\)
b: \(\Leftrightarrow a^2x^2\left(2x+5\right)-4\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(a^2x^2-4\right)=0\)
Trường hợp 1: a=0
Phương trình sẽ là 2x+5=0
hay x=-5/2
Trường hợp 2: a<>0
Phương trình sẽ là \(\left(2x+5\right)\left[\left(ax\right)^2-4\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=-\dfrac{2}{a}\\x=\dfrac{2}{a}\end{matrix}\right.\)
a) Để phương trình mx+2=0 là phương trình bậc nhất một ẩn thì \(m\ne0\)
b) Để phương trình \(\left(2-m\right)+2m=0\) là phương trình bậc nhất một ẩn thì \(2-m\ne0\)
hay \(m\ne2\)
c) Để phương trình \(mx^2-x+5=0\) là phương trình bậc nhất một ẩn thì m=0
d) Để phương trình \(\left(m-1\right)x^2+mx-8=0\) là phương trình bậc nhất một ẩn thì m-1=0
hay m=1
a,a=0;
b,a=1