Chứng minh : A = 1.2 + 2.3 + 3.4 + 4.5 + ... + n.(n+1) = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1.2+2.3+...+n(n+1)
3A=1.2.3+2.3.3+....+3n(n+1)
3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)
3A=n(n+1)(n+2)
A=n(n+1)(n+2)/3 (đpcm)
- Với \(n=1\Rightarrow1.2=\frac{1.2.3}{3}\) (đúng)
- Giả sử đúng với \(n=k\) hay \(1.2+...+k\left(k+1\right)=\frac{k\left(k+1\right)\left(k+2\right)}{3}\)
Ta cần chứng minh nó đúng với \(n=k+1\) hay:
\(1.2+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)=\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Thật vậy:
\(1.2+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)\)
\(=\frac{k\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right)\left(k+2\right)\)
\(=\left(k+1\right)\left(k+2\right)\left[\frac{k}{3}+1\right]=\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\) (đpcm)
Ta có:
\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)^2}\)
\(=1-\frac{2n+1}{\left(n+1\right)^2}\)
Vậy \(A=\frac{2n+1}{\left(n+1\right)^2}\)
Đặt \(A=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+3n\left(n+1\right)\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left(n+2-n+1\right)\)
\(=1.2.3+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow1.2+2.3+3.4+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}=\frac{5}{6}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)
Ta gọi A=1.2+2.3+3.4+...+n.(n+1)
3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+n.(n+1)(n+2-n+1)
=[1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)]-[0.1.2+1.2.3+2.3.4+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=> A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Vậy 1.2+2.3+3.4+...+n(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
A=1.2+2.3+....+n(n+1)
3A=1.2.3+2.3.3+....+3n(n+1)
3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)
3A=n(n+1)(n+2)
A=n(n+1)(n+2)/3 (đpcm)