Rút gọn biểu thức:
(x+2)^2-2(x+2)(x-3)+(x-3)^2
(x^2-5)
(x+y)^2-(x-y)^2
Giúp mk nha m.n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biểu thức trên = : (( x+y+z)-(x+y))2 ( theo hằng đẳng thức số 20
(x + y +z)2 -2(x + y +z)+(x+y)2
=x2 +y2 + z2 +2xy + 2yz+2xz -2x2 -2xy -2y2 -2xy-2xz-2yz+x2+2xy+y2
= z2
ĐK: \(3x\ne\pm y;x\ne0\)
A = \(\dfrac{3x}{3x+y}-\dfrac{x}{3x-y}+\dfrac{2x}{\left(3x-y\right)\left(3x+y\right)}\)
= \(\dfrac{3x\left(3x-y\right)-x\left(3x+y\right)+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{6x^2-4xy+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{2x\left(3x-2y+1\right)}{\left(3x-y\right)\left(3x+y\right)}\)
Thay x = 1; y=2, ta có:
A = \(\dfrac{2.1\left(3.1-2.2+1\right)}{\left(3.1-2\right)\left(3.1+2\right)}=0\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(P=\dfrac{4k^2-2k.3k+9k^2}{4k^2+2k.3k+9k^2}=\dfrac{13k^2-6k^2}{13k^2+6k^2}=\dfrac{7k^2}{19k^2}=\dfrac{7}{19}\)
\(a,=x^2-3x-10-x^2+3x=-10\\ b,=\left(x+1\right)\left(x+1-x+1\right)=2\left(x+1\right)=2x+2\)
a, ĐKXĐ: x≠±3
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\dfrac{-1}{x^2}\)
b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:
\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4
c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)
Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)
a) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x\left(x^2-5x+1\right)-2\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-5x^2+x-2x^2+10x-2-x^3-11x\)
\(=-7x^2-2\)
b) \(\left(x-1\right)\left(x^2+x+1\right)+x^3-2\)
\(=x\left(x^2+x+1\right)-1\left(x^2+x+1\right)+x^3-2\)
\(=x^3+x^2+x-x^2-x-1+x^3-2\)
\(=2x^3-3\)
c) \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)
\(=x\left(x+y\right)-y\left(x+y\right)-2x\left(x-y\right)\)
\(=x^2+xy-yx-y^2-2x^2+2xy\)
\(=-x^2-y^2+2xy\)
a, \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-7x^2+11x-2-x^3-11x=-7x^2-2\)
b, \(\left(x-1\right)\left(x^2+x+1\right)+\left(x^3-2\right)\)
\(=x^3-1+x^3-2=2x^3-3\)
c, \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)
\(=x^2-y^2-2x^2+2xy=-x^2-y^2+2xy\)
Ta có: \(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+3\right)^3+\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3\)
\(=x^3+125-x^3-9x^2-27x-27+x^3-8-x^3+3x^2-3x+1\)
\(=-6x^2-30x+91\)
\(a,=\left[\left(x+2\right)-\left(x-3\right)\right]^2=\left(x+2-x+3\right)^2=5^2=25\)
\(b=x^2-5\)
\(c=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)