Cho biểu thức A=\(\sqrt{\frac{3x+4}{x-5}}\)và B=\(\frac{\sqrt{5x-4}}{\sqrt{x-5}}\)
a) Các biểu thức trên có nghĩa khi nào?
b)Khi nào A=B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu trong biểu thức thì viết như này , còn trình bày thì anh kid đã làm rồi
a, \(đk:x>2\)
b, \(đk:x\ge0;x\ne9\)
a)
Các biểu thức sau có nghĩa khi \(\frac{1}{x^2-4}>0;x^2-4\ne0\Rightarrow x>2\)
b)
Biểu thức có nghĩa khi \(x\ge0;x\ne9\)
a) đk: \(\hept{\begin{cases}a\ge0\\a\ne16\end{cases}}\)
Ta có:
\(C=\frac{a}{a-16}-\frac{2}{\sqrt{a}-4}-\frac{2}{\sqrt{a}+4}\)
\(C=\frac{a-2\cdot\left(\sqrt{a}+4\right)-2\cdot\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)
\(C=\frac{a-2\sqrt{a}-8-2\sqrt{a}+8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)
\(C=\frac{a-4\sqrt{a}}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}=\frac{\sqrt{a}}{\sqrt{a}+4}\)
b) Ta có: \(a=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)
\(\Rightarrow\sqrt{a}=\sqrt{5}-2\)
Khi đó: \(C=\frac{\sqrt{5}-2}{\sqrt{5}-2+4}=\frac{\sqrt{5}-2}{\sqrt{5}+2}=\frac{\left(\sqrt{5}-2\right)^2}{1}=9-4\sqrt{5}\)
\(C=\frac{a}{a-16}-\frac{2}{\sqrt{a}-4}-\frac{2}{\sqrt{a}+4}\)
a) ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne16\end{cases}}\)
\(=\frac{a}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}-\frac{2\left(\sqrt{a}+4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}-\frac{2\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)
\(=\frac{a-2\sqrt{a}-8-2\sqrt{a}+8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)
\(=\frac{a-4\sqrt{a}}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}=\frac{\sqrt{a}}{\sqrt{a}+4}\)
b) Với \(a=9-4\sqrt{5}\)( tmđk )
\(C=\frac{\sqrt{a}}{\sqrt{a}+4}=1-\frac{4}{\sqrt{a}+4}\)
\(C=1-\frac{4}{\sqrt{9-4\sqrt{5}}+4}\)
\(=1-\frac{4}{\sqrt{5-4\sqrt{5}+4}+4}\)
\(=1-\frac{4}{\sqrt{\left(\sqrt{5}-2\right)^2}+4}\)
\(=1-\frac{4}{\left|\sqrt{5}-2\right|+4}\)
\(=1-\frac{4}{\sqrt{5}-2+4}\)
\(=1-\frac{4}{\sqrt{5}+2}\)
\(=\frac{\sqrt{5}+2-4}{\sqrt{5}+2}\)
\(=\frac{\sqrt{5}-2}{\sqrt{5}+2}\)
\(=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}-2\right)}{1}=9-4\sqrt{5}\)
a) \(ĐKXĐ:x\ge0;x\ne3\)
b) \(A=\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right)\)
\(\Leftrightarrow A=\left(\frac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}\right)\left(2\sqrt{x}+2\sqrt{3}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}-\sqrt{3}}{\sqrt{x}+\sqrt{3}}\right).2\left(\sqrt{x}+\sqrt{3}\right)\)
\(\Leftrightarrow A=2\left(\sqrt{x}-\sqrt{3}\right)\)
\(\Leftrightarrow A=2\sqrt{x}-2\sqrt{3}\)
c) Thay \(x=4-2\sqrt{3}\)vào A, ta có :
\(A=2\sqrt{4-2\sqrt{3}}-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{\left(1-\sqrt{3}\right)^2}-2\sqrt{3}\)
\(\Leftrightarrow A=2\left(\sqrt{3}-1\right)-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{3}-2-2\sqrt{3}\)
\(\Leftrightarrow A=-2\)