cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O . điểm M thuộc cung nhỏ BC . vẽ MD , ME , MF lần lượt vuông góc với AB , , AC tại D,E,F
A/chứng minh các tứ giác MEFC nội tiếp và góc DBM = góc DEM
B/ chứng minh D,E,F thẳng hàng và MB.MF=MD.MC
C/gọi V là trực tâm của tam giác ABC . tia BV cắt đường tròn O tại R . chứng minh góc FRV = góc FVR . từ đó suy ra DE đi qua trung điểm của VM
thank :))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek
đề đây nha mn :(( cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E
Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP
c cmr CE = CD tam giác AMD là tam giác j vì s
D CMR AM NHỎ HƠN AB +AC /2
CHỈ LM MỖI Ý D THUI NHA NHANH NHA
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại B
=>BD=BA=CE
c: Xet ΔMAD có
MH vừa là đường cao,vừa là trung tuyến
=>ΔMAD cân tại M
d: AM<1/2(AB+AC)
=>AE<AB+AC
=>AE<BE+AB(luôn đúng)
a) Ta có: \(\angle MEC=\angle MFC=90\Rightarrow MEFC\) nội tiếp
Ta có: \(\angle BDM+\angle BEM=90+90=180\Rightarrow BDME\) nội tiếp
\(\Rightarrow\angle DBM=\angle DEM\)
b) BDME nội tiếp \(\Rightarrow\angle BED=\angle BMD=90-\angle DBM\)
MEFC nội tiếp \(\Rightarrow\angle FEC=\angle FMC=90-\angle ACM\)
mà \(\angle DBM=\angle ACM\) (ABMC nội tiếp)
\(\Rightarrow\angle BED=\angle FEC\) mà B,E,C thẳng hàng \(\Rightarrow D,E,F\) thẳng hàng
Xét \(\Delta MBD\) và \(\Delta MCF:\) Ta có: \(\left\{{}\begin{matrix}\angle MFC=\angle MDB\\\angle MCA=\angle MBD\end{matrix}\right.\)
\(\Rightarrow\Delta MBD\sim\Delta MCF\left(g-g\right)\Rightarrow\dfrac{MB}{MC}=\dfrac{MD}{MF}\Rightarrow MB.MF=MD.MC\)
c) Kẻ đường cao AH,BI
Ta có: \(\angle ARV=\angle ACB=\angle BVH\left(=90-\angle CBI\right)=\angle AVI\)
\(\Rightarrow\Delta AVR\) cân tại A có \(AC\bot VR\Rightarrow AC\) là trung trực VR
mà F nằm trên AC \(\Rightarrow FV=FR\Rightarrow\Delta FVR\) cân tại F \(\Rightarrow\angle FVR=\angle FRV\)
DF cắt BR tại G
\(\angle GRM=\angle BRM=\angle BCM=\angle ECM=\angle EFM=\angle GFM\)
\(\Rightarrow GRFM\) nội tiếp mà \(MF\parallel GR (\bot AC)\) \(\Rightarrow GRFM\) là hình thang cân
\(\Rightarrow\angle MGR=\angle FRG=\angle FRV=\angle FVR\) \(\Rightarrow VF\parallel GM\)
mà \(MF\parallel GR\) \(\Rightarrow VFMG\) là hình bình hành có GF,VM là các đường chéo nên cắt nhau tại trung điểm mỗi đường
\(\Rightarrow DF\) đi qua trung điểm VM
thank