cho a,b,c>0 và a+b+c=1 chứng minh \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le3,5\)3,5
mình cần gấp càng kĩ càng tốt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*) ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Nhân vế với vế của các BĐT trên,ta được: \(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
ĐKXĐ a>0 và a≠1
Rút gọn được A=2+2(a+1)/√a
A=7 → 2+2(a+1)/√a=7→2a-5√a+2=0, giải ra a=4 hoặc a=1/4.
Do a≠1 nên (√a-1)²>0 → a+1>2√a, do đó A>2+2.2√a/√a=6. Vậy A>6 với mọi a>0 và a≠1
\(VT=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+c\right)\left(b+a\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\le_{AM-GM}\dfrac{a+b+a+c}{2}+\dfrac{b+c+b+a}{2}+\dfrac{c+a+c+b}{2}=2\left(a+b+c\right)=VP\) (đpcm)
Đầy đủ hơn 1 tí nhé
Theo gt : ab + bc + ca = 1 nên a2 + 1 = a2 + ab + bc + ca
= ( a + b )( a + c )
- Áp dụng bđt Cauchy ta có :
\(\sqrt{a^2+1}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\frac{\left(a+b\right)\left(a+c\right)}{2}\)
- Tương tư ta cũng có :
\(\sqrt{b^2+1}\le\frac{\left(b+a\right)+\left(b+c\right)}{2}\)và \(\sqrt{c^2+1}\le\frac{\left(c+a\right)+\left(c+b\right)}{2}\)
Từ đó suy ra : VT \(\le\frac{\left(a+b\right)+\left(a+c\right)+\left(b+a\right)+\left(b+c\right)+\left(c+a\right)+\left(c+b\right)}{2}\)
\(\le2\left(a+b+c\right)=VP\left(đpcm\right)\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)
Cần cm:
\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\\ \Leftrightarrow a+b=a+b+2c+2\sqrt{\left(a+c\right)\left(b+c\right)}\\ \Leftrightarrow2c+2\sqrt{ab+ac+bc+c^2}=0\\ \Leftrightarrow2c+2\sqrt{c^2}=0\\ \Leftrightarrow2c+2\left|c\right|=0\\ \Leftrightarrow2c-2c=0\left(c< 0\right)\\ \Leftrightarrow0=0\left(luôn.đúng\right)\)
Vậy đẳng thức đc cm
Ta có:
\(\frac{2}{\sqrt{a}}+\frac{2}{\sqrt{b}}+\frac{2}{\sqrt{c}}=\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)+\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)+\left(\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}\right)\)
\(\ge\frac{\left(1+1\right)^2}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+1\right)^2}{\sqrt{b}+\sqrt{c}}+\frac{\left(1+1\right)^2}{\sqrt{c}+\sqrt{a}}\)
\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{4}{\sqrt{b}+\sqrt{c}}+\frac{4}{\sqrt{c}+\sqrt{a}}\)
=> \(2\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)\(\ge4\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{c}+\sqrt{a}}\right)\)
=> \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)\(\ge2\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{c}+\sqrt{a}}\right)\)
"=" xảy ra <=> a =b =c.
\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+ac+bc}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\) Chứng minh tương tự ta được:
\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+a}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+a}+\dfrac{b}{b+c}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)=\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\left(1+1+1\right)=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)
\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
Tương tự: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)
Cộng vế:
\(VT\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)