1/
cho x^2+y^2= 20 và xy=8. tính giá trị của (x+y)^2
2/rút gọn biểu thức
M= (2^2+1) (2^4+1) (2^8+1) (2^16+1)
N= 16 (7^2+1) (7^4+1) (7^8+1) (7^16+1)
Nhờ các bạn giúp mình với, chiều chủ nhật 31/6 mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a ) Ta có :
\(\left(x+y\right)^2=x^2+y^2+2xy=20+16=36\)
b ) Ta có :
\(x^2+y^2=\left(x+y\right)^2-2xy=64-30=34\)
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
1) a) 4⁸.2²⁰ = (2²)⁸.2²⁰
= 2¹⁶.2²⁰ = 2³⁶
-----------
9¹².27⁵.81³ = (3²)¹².(3³)⁵.(3⁴)⁴
= 3²⁴.3¹⁵.3¹⁶ = 3⁵⁵
--------
64³.4⁵.16² = (4³)³.4⁵.(4²)²
= 4⁹.4⁵.4⁴ = 4¹⁸
b) 25²⁰.125⁴ = (5²)²⁰.(5³)⁴
= 5⁴⁰.5¹² = 5⁵²
--------
x⁷.x³.x⁴ = x¹⁴
--------
3⁶.4⁶ = (3.4)⁶ = 12⁶
2) a) 2² = 4
2³ = 8
2⁴ = 16
2⁵ = 32
2⁶ = 64
2⁷ = 128
2⁸ = 256
2⁹ = 512
2¹⁰ = 1024
b) 3² = 9
3³ = 27
3⁴ = 81
3⁵ = 243
c) 4² = 16
4³ = 64
4⁴ = 256
d) 5² = 25
5³ = 125
5⁴ = 625
b: \(=\left(x^2+3x+1-3x+1\right)^2=\left(x^2+2\right)^2\)
Câu 1 :
a, 8.( -5 ).( -4 ).2
= [ 8.2 ].[( -5 ).(-4 ]
= 16.20
= 320
b, \(1\frac{3}{7}+\frac{-1}{3}+2\frac{4}{7}\)
\(=\frac{10}{7}+\frac{-1}{3}+\frac{18}{7}\)
\(=\frac{11}{3}\)
c, \(\frac{8}{5}.\frac{2}{3}+\frac{-5.5}{3.5}\)
\(=\frac{8}{3}+\frac{-5}{3}\)
\(=\frac{3}{3}=1\)
d, \(\frac{6}{7}+\frac{5}{8}:5-\frac{3}{16}.\left(-2\right)^2\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3}{16}.4\)
\(=\frac{55}{56}-\frac{3}{4}\)
\(=\frac{13}{56}\)
Câu 2 :
a, 2x + 10 = 16
2x = 16 + 10
2x = 26
x = 26 : 2
x = 13
b, \(x-\frac{1}{3}=\frac{5}{4}\)
\(x=\frac{5}{4}+\frac{1}{3}\)
\(x=\frac{19}{12}\)
c, \(2x+3\frac{1}{3}=7\frac{1}{3}\)
\(2x+\frac{10}{3}=\frac{22}{3}\)
\(2x=\frac{22}{3}-\frac{10}{3}\)
\(2x=4\)
\(x=4:2\)
\(x=2\)
d, \(\left(\frac{2}{11}+\frac{1}{3}\right)x=\left(\frac{1}{7}-\frac{1}{8}\right).56\)
\(\frac{17}{33}x=1\)
\(x=1-\frac{17}{33}\)
\(x=\frac{16}{33}\)
1) ta có \(\left(x+y\right)^2=x^2+2xy+y^2.\)
\(=\left(x^2+y^2\right)+2xy\)
\(=20+2.8\)(theo giả thiết x^2+y^2=20 , xy=8)
\(=36\)
Vậy với x^2+y^2=20, xy=8 thì (x+y)^2=36
2) \(M=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Rightarrow3M=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left[\left(2^2\right)^2-1^2\right]\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left[\left(2^4\right)^2-1^2\right]\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left[\left(2^8\right)^2-1^2\right]\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^{16}\right)^2-1^2\)
\(\Leftrightarrow3M=2^{32}-1\)
\(\Rightarrow M=\frac{2^{32}-1}{3}\)
RÚT GỌN BIỂU THỨC N BẠN LÀM TƯƠNG TỰ NHA
\(N=16\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Rightarrow3N=48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(...\)
\(...\)
Kết quả rút gọn \(N=\frac{7^{32}-1}{3}\)