K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2022

Chu vi của tam giác ABC là

 C=AB+BC+CA=10+24+30=64(cm)

Ta có : tg A'B'C' đồng dạng tg ABC

=>\(\dfrac{CvitgA'B'C'}{CvitgABC}=\dfrac{A'B'}{AB}\left(tisochuvi=tisodongdang\right)\)

=>\(\dfrac{128}{64}=\dfrac{A'B'}{10}\)

=>A'B'=\(\dfrac{128.10}{64}=20\left(cm\right)\)

Chứng minh tương tự B'C'=60cm

                                    A'C'=48cm

 

29 tháng 1 2022

A B C A" B" C"

ta có: 

\(\dfrac{AB"}{AB}=\dfrac{AC"}{AC}=\dfrac{BC"}{BC}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{AB"+AC"+BC"}{AB+AC+BC}=\dfrac{128}{10+24+30}=\dfrac{128}{64}=2\)

\(AB"=2.10=20\)

\(AC"=2.24=48\)

\(BC"=2.30=60\)

Vậy AB" = 20cm , AC"=48cm, BC"=60cm

9 tháng 3 2022

bạn ơi còn cái hình nữa bạn 

c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)

a) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

HB=6^2/10=3,6cm