K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014

15 tháng 10 2016

ki+e

n ejmfjnhcy

7 tháng 3 2016

A=2015

Cần cách làm thì tích nha

10 tháng 8 2017

Mỗi biểu thức trong dấu căn có dạng:

\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}\)   ( Với \(k\ge2\))

Ta có:

\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=\frac{k^2\left(k+1\right)^2+\left(k+1\right)^2+k^2}{k^2\left(k+1\right)^2}=\frac{k^4+2k^3+k^2+k^2+2k+1+k^2}{k^2\left(k+1\right)^2}\)

\(=\frac{k^4+2k^2\left(k+1\right)+\left(k+1\right)^2}{k^2\left(k+1\right)^2}=\frac{\left(k^2+k+1\right)^2}{\left(k\left(k+1\right)\right)^2}\)

\(\Rightarrow\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\frac{k^2+k+1}{k^2+k}=1+\frac{1}{k\left(k+1\right)}=1+\frac{1}{k}-\frac{1}{k+1}\)

\(\Rightarrow S=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2013}-\frac{1}{2014}=2014-\frac{1}{2014}\)

22 tháng 9 2017

Mỗi biểu thức trong dấu căn có dạng:

1+1k2 +1(k+1)2    ( Với k≥2)

Ta có:

1+1k2 +1(k+1)2 =k2(k+1)2+(k+1)2+k2k2(k+1)2 =k4+2k3+k2+k2+2k+1+k2k2(k+1)2 

=k4+2k2(k+1)+(k+1)2k2(k+1)2 =(k2+k+1)2(k(k+1))2 

⇒√1+1k2 +1(k+1)2 =k2+k+1k2+k =1+1k(k+1) =1+1k −1k+1 

⇒S=1+1−12 +1+12 −13 +1+13 −14 +...+1+12013 −12014 =2014−12014 

17 tháng 1 2016

Em mới lớp 6 thui! Sorry vì ko giúp đc

17 tháng 1 2016

ai biet jup tui voi

 

6 tháng 1 2016

Ta có:

\(\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+..+\frac{2}{2013}+\frac{1}{2014}\)

\(=\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+...+\left(\frac{2}{2013}+1\right)+\left(\frac{1}{2014}+1\right)+1\)

\(=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2013}+\frac{2015}{2014}+\frac{2015}{2015}\)

\(=2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)\)

Do đó:   \(A=\frac{2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}}=2015\)

 

 

4 tháng 1 2017

ĐK : \(\hept{\begin{cases}x\ge2013\\y\ge2014\end{cases}}\)

Ta có \(A=\frac{\sqrt{\left(x-2013\right).2015}}{\sqrt{2015}\left(x+2\right)}+\frac{\sqrt{\left(x-2014\right).2014}}{\sqrt{2014}.x}\le\frac{\frac{x-2013+2015}{2}}{\sqrt{2015}\left(x+2\right)}+\frac{\frac{x-2014+2014}{2}}{\sqrt{2014}.x}\)

\(\Rightarrow A\le\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)

Vậy .............................................

Bạn hỏi hay trả lời luôn dzậy?