Rút gọn :
1/\(\frac{a}{\sqrt{a^2-b^2}} \left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\left(\frac{b}{a-\sqrt{a^2-b^2}}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\frac{a+\sqrt{a}+1}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\sqrt{a}\left(a+1\right)-\left(a+1\right)}\right)\)
\(=\left(\frac{a+\sqrt{a}+1}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right)\)
\(=\left(\frac{a+\sqrt{a}+1}{a+1}\right):\left(\frac{a+1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right)\)
\(=\frac{a+\sqrt{a}+1}{a+1}.\frac{\left(\sqrt{a}-1\right)\left(a+1\right)}{a+1-2\sqrt{a}}\)
\(=\frac{\left(a+1\right)\left(a+\sqrt{a}+1\right)}{a-2\sqrt{a}+1}\)
\(=\frac{a^2+a\sqrt{a}+2\text{a}+\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\frac{\left(a+\sqrt{a}+1\right)\left(a+1\right)}{a-2\sqrt{a}+1}\)
câu a đã có người làm rồi nên mình không làm
tick cho mình nha
a) \(A=\left[\left(\frac{1}{5}\right)^2\right]^{\frac{-3}{2}}-\left[2^{-3}\right]^{\frac{-2}{3}}=5^3-2^2=121\)
b) \(B=6^2+\left[\left(\frac{1}{5}\right)^{\frac{3}{4}}\right]^{-4}=6^2+5^3=161\)
c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}=\frac{a^{\sqrt{5}+3}.a^{5-\sqrt{5}}}{a^{\left(2\sqrt{2}\right)^2-1^2}}\)
\(=\frac{a^{\sqrt{5}+3+5-\sqrt{5}}}{a^{8-1}}=\frac{a^8}{a^7}=a\)
d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left[1-2\sqrt{\frac{b}{a}}+\left(\sqrt{\frac{b}{a}}\right)^2\right]\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left(1-\sqrt{b}a\right)^2\)
\(K=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\)
\(=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2-\frac{2}{a^2+b^2}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{1}{\left(a^2+b^2\right)^2}}}\)
\(=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\left(\frac{1}{a^2}+\frac{1}{b^2}-\frac{1}{a^2+b^2}\right)^2}}\)
\(=\sqrt{\frac{1}{\left(a+b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}}\)
\(=\sqrt{\frac{1}{\left(a+b\right)^2}+\left(\frac{1}{a}+\frac{1}{b}\right)^2-\frac{2}{\left(a+b\right)}\left(\frac{1}{a}+\frac{1}{b}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)
Chúc bạn học tốt !!!