K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

F(x) = 2x6 + x2 + 3x4 + 1

Ta có: 2x6 \(_{\ge}\)0

x2 \(\ge\)0

\(3x^4\ge0\)

=> 2x6 + x2 + 2x4 + 1 \(\ge1\)

Vậy \(2x^6+x^2+3x^4+1\)không có nghiệm

Chúc bạn học tốt

5 tháng 7 2018

\(F\left(x\right)=2x^6+x^2+3x^4+1\)

Ta có:

\(2x^6\ge0;x^2\ge0;3x^4\ge0\)

\(\Rightarrow2x^6+x^2+3x^4+1\ge1\)

Vậy đa thức F(x) không có nghiệm

23 tháng 7 2021

f(x)=3-x-a

nghiệm đa thức bằng 2 ⇒ x=2

⇒f(2)=3-2-a=0

        ⇒1-a=0

        ⇒a=1

23 tháng 7 2021

Ta có: nghiệm đa thức bằng 2 thì f(x) = 0 

\(\Rightarrow\) f(2) = 3 - 2 - a = 0

f(2) = 1 - a  = 0

\(\Rightarrow\)a  = 1 - 0 = 1

Vậy a = 1 để nghiệm của đa thức f(x) = 3 - x - a có nghiệm là 2

7 tháng 5 2021

thay x = 5 vào đa thức ta được:
4.5^2 - 7.5 + C
<=> 4.25 - 35 + C = 0
<=> 100 - 35 + C = 0
<=> 65 + C = 0

<=> C = 0 - 65

<=> C = -65

Vậy hệ số tự do C = - 65 để có nghiệm bằng 5
 

a: Bậc là 2

Hệ số cao nhất là -7

Hệ số tự do là 1

b: Thay x=2 vào A=0, ta được:

\(a\cdot2^2-3\cdot2-18=0\)

\(\Leftrightarrow4a=24\)

hay a=6

c: Ta có: C+B=A

nên C=A-B

\(=6x^2-3x-18-1-4x+7x^2\)

\(=13x^2-7x-19\)

10 tháng 4 2017

ta có f(-2)=\(2.\left(-2\right)^2-3.\left(-2\right)+c=0\)(vì -2 là nghiệm của đa thức)

\(f\left(-2\right)=14+c=0\Leftrightarrow c=-14\)

vậy hệ số c là -14

14 tháng 4 2019

Là sao ta lolang

a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9

g(x)=x^5+7x^4+2x^3+2x^2-3x-9

b: H(x)=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9

=3x^2+x

c: H(x)=0

=>x(3x+1)=0

=>x=0 hoặc x=-1/3

`a,` 

`Q(x)=` \(\dfrac{1}{2}x+\dfrac{2}{3}x^3-\dfrac{1}{3}x+\dfrac{5}{2}x^2-\dfrac{2}{3}x^3+1\)

`Q(x)=`\(\left(\dfrac{2}{3}x^3-\dfrac{2}{3}x^3\right)+\dfrac{5}{2}x^2+\left(\dfrac{1}{2}x-\dfrac{1}{3}x\right)+1\)

`Q(x)=`\(\dfrac{5}{2}x^2+\dfrac{1}{6}x+1\)

`b,` Bậc của đa thức: `2`

Hệ số cao nhất: `5/2`

Hệ số tự do: `1`

`c,`

`Q(-6)=`\(\dfrac{5}{2}\cdot\left(-6\right)^2+\dfrac{1}{6}\cdot\left(-6\right)+1\)

`= 5/2*36 -1+1 = 90-1+1=90`

`Q(1)= 5/2*1^2+1/6*1+1 = 5/2+1/6+1=8/3+1=11/3`

`Q(2)=5/2*2^2+1/6*2+1=5/2*4+1/3+1=10+1/3+1=31/3+1=34/3`

3 tháng 4 2023

a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4+x^4+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(4x^4+x^4-x^4\right)+\left(5x^3-4x^3\right)+\left(3x^2-2x^2\right)+1\)

\(f\left(x\right)=1+x^2+x^3+4x^4+2x^6\)

Hệ số cao nhất là 4, đa thức có bậc là 6, hệ số tự do là 1

b) Khi \(f\left(-1\right)\) thì đa thức trở thành:

\(f\left(-1\right)=2.\left(-1\right)^6+4.\left(-1\right)^4+\left(-1\right)^3+\left(-1\right)^2+1\)

\(f\left(-1\right)=2+4+-1+1+1\)

\(f\left(-1\right)=7\)

c) Vì \(2x^6+4x^4+x^3+x^2+1\ge0\) nên đa thức \(f\left(x\right)\) không có nghiệm