6/1*3 + 6/ 3* 5 + 6 / 5*7 + ... + 6/ 49* 51
Ai giúp tớ làm bài này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 7\(\dfrac{3}{5}\) : \(x\) = 5\(\dfrac{4}{15}\) - 1\(\dfrac{1}{6}\)
\(\dfrac{38}{5}\) : \(x\) = \(\dfrac{79}{15}\) - \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{41}{10}\)
\(x\) = \(\dfrac{38}{5}\) : \(\dfrac{41}{10}\)
\(x\) = \(\dfrac{76}{41}\)
b, \(x\) \(\times\) 2\(\dfrac{2}{3}\) = 3\(\dfrac{4}{8}\) + 6\(\dfrac{5}{12}\)
\(x\) \(\times\) \(\dfrac{8}{3}\) = \(\dfrac{7}{2}\) + \(\dfrac{77}{12}\)
\(x\) \(\times\) \(\dfrac{8}{3}\) = \(\dfrac{119}{12}\)
\(x\) = \(\dfrac{119}{12}\)
\(x\) = \(\dfrac{119}{12}\): \(\dfrac{8}{3}\)
\(x\) = \(\dfrac{119}{32}\)
A = 1 . 3 + 3 . 5 + 5 . 7 + ... + 49 . 51
A=1*51
A=
B = 2 . 4 + 4 . 6 + 6 . 8 + ... + 98 . 100
B=2*100
B=200
C = 1 . 4 + 4 . 7 + 7 . 10 + ... + 301 . 304
C=1*304
C=304
D = 1 + 1 . 1! + 2 . 2! + 3 . 3! + ... + 100 . 100!
D=1*100!
D=100!
E = 22 + 42 + ... + ( 2n )2
E=\(2^2\cdot2n^2\)
E=\(2n^4\)
5/4-yx5/6=-1/12
5/4-y = -1/12:5/6
5/4-y = -1/10
y = 5/4-(-1/10)
y = 27/20
\(\frac{5}{4}-y.\frac{5}{6}=\frac{1}{4}-\frac{1}{3}\)
\(\Rightarrow\frac{5}{4}-y.\frac{5}{6}=-\frac{1}{12}\)
\(\Rightarrow y.\frac{5}{6}=\frac{5}{4}-\left(-\frac{1}{12}\right)\)
\(\Rightarrow y.\frac{5}{6}=\frac{5}{4}+\frac{1}{12}\)
\(\Rightarrow y.\frac{5}{6}=\frac{4}{3}\)
\(\Rightarrow y=\frac{4}{3}:\frac{5}{6}\)
\(\Rightarrow y=\frac{8}{5}\)
Vậy \(y=\frac{8}{5}.\)
\(2-\frac{7}{9}-\frac{5}{6}\)
\(=\frac{x}{y}-\frac{a}{b}\)
(Tự làm đi chứ )
x - 5 = 6
x = 6 + 5
x = 11
7 + x + 3 = 12
7 + x = 12 - 3
7 + x = 9
x = 9 - 7
x = 2
\(\frac{6}{1.3}+\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{49.51}\)
\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=3\left(1-\frac{1}{51}\right)\)
\(=3.\frac{50}{51}\)
Chúc bn hok tốt
\(\frac{6}{1\cdot3}+\frac{6}{3\cdot5}+\frac{6}{5\cdot7}+...+\frac{6}{49\cdot51}\)
\(=3\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{49\cdot51}\right)\)
\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=3\left(1-\frac{1}{51}\right)\)
\(=3\cdot\frac{50}{51}\)
\(=\frac{50}{17}\)