Cho \(A=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)
a) Tìm ĐKXĐ và rút gọn
b) So sánh A với 5
Đừng làm tắt nghen :<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: \(x>0,x\ne1\)
A=Đề\(=\left[\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{-1}{\sqrt{x}}\cdot\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)}\)\(=\frac{-\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
Đề sai hả bạn ?
a, \(\left(\frac{1}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}+2}\right):\frac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)ĐK : x >= 0 ; \(x\ne1\)
\(=\left(\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}}\)
b, \(F=\frac{5}{2}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{5}{2}\Rightarrow2\sqrt{x}+4=5\sqrt{x}\Leftrightarrow3\sqrt{x}=4\Leftrightarrow x=\frac{16}{9}\)
ĐK : x > 0 , x khác 1
\(bthuc=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}}\)
Để bthuc = 5/2 thì \(\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{5}{2}\Rightarrow2\sqrt{x}+4=5\sqrt{x}\Leftrightarrow3\sqrt{x}=4\Leftrightarrow x=\frac{16}{9}\left(tm\right)\)
a, \(P=\left(\frac{\sqrt{x}}{x\sqrt{x}-1}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b, Vì x > 1, g/s : Thay x = 4 vào P ta được :
\(\frac{\sqrt{4}+1}{\sqrt{4}-1}=\frac{3}{1}=3\)
Thay x = 4 vào căn P ta được : \(\sqrt{\frac{\sqrt{4}+1}{\sqrt{4}-1}}=\sqrt{3}\)
mà \(3>\sqrt{3}\Rightarrow P>\sqrt{P}\)với x > 1
Giúp mk nhanh nha.mk cần gấp...........ai nhanh mak đúng mk k cho
1.
a. ĐKXĐ : x lớn hơn hoặc bằng 1/2
b. A\(\sqrt{2}\)= \(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
= \(\sqrt{2x-1+1+2\sqrt{2x-1}}-\sqrt{2x-1+1-2\sqrt{2x-1}}\)
=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
= \(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)
Nếu \(x\ge1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)=2\)
\(\Rightarrow A=2\)
Nếu 1/2 \(\le x< 1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)=2\sqrt{2x-1}\)
Do đó : A= \(\sqrt{4x-2}\)
Vậy ............
2.
a. \(x\ge2\)hoặc x<0
b. A= \(2\sqrt{x^2-2x}\)
c. A<2 \(\Leftrightarrow\)\(2\sqrt{x^2-2x}< 2\Leftrightarrow\sqrt{x^2-2x}< 1\Leftrightarrow x^2-2x< 1\Leftrightarrow\left(x-1\right)^2< 2\)
\(-\sqrt{2}< x-1< \sqrt{2}\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
Kết hợp vs đk câu a , ta đc : \(1-\sqrt{2}< x< 0và2\le x< 1+\sqrt{2}\)
Vậy...........
\(ĐKXĐ:x\ge0;x\ne1;0\)
\(A=\frac{2x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(A=\frac{2x+2}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(A=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(A=\frac{2x+2+2\sqrt{x}}{\sqrt{x}}\)
\(A=2\sqrt{x}+\frac{2}{\sqrt{x}}+2\)
a/d bđt cauchy
\(2\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{2.2}=2.2=4\)
\(A\ge4+2=6\)
\(< =>A>5\)
dấu "=" xảy ra khi x=1