tính:
1/25.27+1/27.29+1/29.31+...+1/73.75
4/2.4 + 4/4.6 +4/6.8 +...+ 4/2008.2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=4/2.4+4/4.6+4/6.8+...+4/2008.2010
C = 2 ( 2 / 2.4 + 2/4.6 + 2/6.8 + ...+2/2008.2010)
C = 2 ( 1 - 1/4 + 1/4 - 1/6+1/6 - 1/8 +....+1/2008 - 1/2010 )
C = 2 ( 1 - 1 / 2010 )
C = 2 . 2009/2010
C = 2009 / 1005
Chúc bạn học tốt !
Ta có :
\(B=\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
\(2B=\frac{2}{25.27}+\frac{1}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\)
\(2B=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+....+\frac{1}{73}-\frac{1}{75}\)
\(2B=\frac{1}{25}-\frac{1}{75}\)
\(2B=\frac{2}{75}\)
\(\Rightarrow B=\frac{1}{75}\)
Vậy B = \(\frac{1}{75}\)
\(F=\frac{4}{2.3}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(\Rightarrow F=2\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2008.2010}\right)\)
\(\Rightarrow F=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(\Rightarrow F=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(\Rightarrow F=2.\frac{502}{1005}=\frac{1004}{1005}\)
Vậy F = \(\frac{1004}{1005}\)
\(\text{Ta có:}\) \(C=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(\Rightarrow\frac{1}{2}C=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{2008.2010}\)
\(\Rightarrow\frac{1}{2}C=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\)
\(\Rightarrow\frac{1}{2}C=\frac{1}{2}-\frac{1}{2010}\)
\(\Rightarrow\frac{1}{2}C=\frac{502}{1005}\)
\(\Rightarrow C=\frac{502}{1005}:\frac{1}{2}=\frac{1004}{1005}\)
Ta có: \(B=\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(\Rightarrow2B=\frac{2}{25.27}+\frac{2}{27.29}+...+\frac{2}{73.75}\)
\(\Rightarrow2B=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+....+\frac{1}{73}-\frac{1}{75}\)
\(\Rightarrow B=\left(\frac{1}{25}-\frac{1}{75}\right):2\)
\(\Rightarrow B=\frac{1}{75}\)
Vậy \(B=\frac{1}{75}\)
\(C=\frac{4}{2.4}+\frac{4}{4.6}+...+\frac{4}{2008.2010}\)
\(\Rightarrow\frac{2}{4}C=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\)
\(\Rightarrow\frac{2}{4}C=\frac{1}{2}-\frac{1}{2010}=\frac{502}{1005}\)
\(\Rightarrow C=\frac{502}{1005}:\frac{2}{4}=\frac{1004}{1005}\)
Vậy \(C=\frac{1004}{1005}\)
Ủng hộ tớ nha m.n ^_^
A = \(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
=\(7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{70}\right)\)
=\(7.\frac{3}{35}\)
=\(\frac{3}{5}\)
B=\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
=\(\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
=\(\frac{1}{2}.\frac{2}{75}\)
=\(\frac{1}{75}\)
a,
suy ra A = 7. (1/10.11+1/11.12+1/12.13+.......+1/69.70)
suy ra A = 7. ( 1/10 - 1/11+ 1/11 - 1/12 + 1/12 - 1/13+ ............. + 1/69 - 1/70)
suy ra A = 7. ( 1/ 10 - 1/70)
suy ra A= 7. 3/35
suy ra A= 3/5
K:2=2/2.4+2/4.6+2/6.8+...+2/2008.2010
=1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010
=1/2-1/2010
=502/1005
K=502/1005.2
=1004/1005
F=1/3.6+1/6.9+1/9.12+...+1/30.33
3F=3/3.6+3/6.9+3/9.12+...+1/30.33
=1/3-1/6+1/6-1/9+1/9-1/12+...+1/30-1/33
=1/3-1-33
=10/33
F=10/33:3
=10/99
Bn sai câu K = 4/2.4 + 4/4.6 + 4/6.8 +....+ 4/2008.2010
A=4/2.4+4/4.6+4/6.8+...+4/2008.2010
=2.(2/2.4+2/4.6+2/6.8+...+2/2008.2010)
=2.(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010)
=2.(1/2-1/2010)
=2.502/1005
=1004/1005
Vậy A=1004/1005
100% giải đúng đầu tiên:
Ta có: \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2.\frac{2}{2.4}+2.\frac{2}{4.6}+2.\frac{2}{6.8}+...+2.\frac{2}{2008.2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+..+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{2010}\)
\(=1-\frac{1}{1005}=\frac{1004}{1005}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(2A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
\(2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(2A=\frac{1}{1}-\frac{1}{100}\)
\(2A=\frac{99}{100}\Rightarrow A=\frac{99}{100}:2\Rightarrow A=\frac{99}{200}\)
Câu B và C làm tương tự.
bạn Nhi làm sai rồi
\(\frac{2}{2\cdot3}\) sao có thể bằng \(\frac{1}{2}-\frac{1}{3}\) được
\(\frac{1}{2\cdot3}\) mới bằng \(\frac{1}{2}-\frac{1}{3}\)
kết quả là : \(\frac{49}{100}\)
\(\frac{2}{5}:\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}.\frac{1}{3}\)
\(=\frac{6}{5}+\frac{-2}{3}+\frac{1}{5}\)
\(=\frac{11}{15}\)
~ Hok tốt ~
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=4.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2008.2010}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=4.\left[\frac{1}{2}+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+...+\left(\frac{1}{2008}-\frac{1}{2008}\right)-\frac{1}{2010}\right]\)
\(=4.\left[\frac{1}{2}-\frac{1}{2010}\right]\)
\(=4.\frac{502}{1005}=\frac{2008}{1005}\)
~ Hok tốt ~
a, \(\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(=\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(=\frac{1}{2}\left(\frac{2}{75}\right)\)
\(=\frac{1}{75}\)
b, \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1004}{2010}\right)\)
\(=2\left(\frac{502}{1005}\right)\)
\(=\frac{1004}{1005}\)
Tk hộ =v
\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}=\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}.\frac{2}{75}=\frac{1}{75}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)=2.\left(\frac{1}{2}-\frac{1}{2010}\right)=2.\frac{502}{1005}=\frac{1004}{1005}\)