Cho tam giác ABC là tam giác đều, cạnh 6 cm. Trên tia đối của tia AC lấy 1 điểm D sao cho góc BDC=30 độ
a) Tính BD
b) Tính diện tích tam giác ABD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ok, thanks nhưng dừng khoảng chừng là 2 giây, you lấy từ qanda
1:
a: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
b: AB<AC
=>góc B>góc C
góc ADB=góc C+góc CAD
góc ADC=góc B+góc BAD
mà góc C<góc B và góc CAD=góc BAD
nên góc ADB<góc ADC
a.
O thuộc đường trung trực của AB => OA = OB
O thuộc đường trung trực của AC => OA = OC
=> OB = OC
=> Tam giác OBC cân tại O
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a) Xét tam giác \(BDC\):
\(\widehat{DBC}=180^o-\widehat{BDC}-\widehat{DCB}=180^o-30^o-60^o=90^o\)
Do đó tam giác \(BDC\)vuông tại \(B\).
Có \(\widehat{BDC}=30^o\)nên \(BC=\frac{1}{2}DC\Rightarrow AB=AC=\frac{1}{2}DC\Rightarrow DC=12\left(cm\right)\).
\(BC^2+BD^2=CD^2\)(định lí Pythagore)
\(\Leftrightarrow BD^2=CD^2-BC^2=12^2-6^2=108\)
\(\Leftrightarrow BD=6\sqrt{3}\left(cm\right)\)
b) \(S_{ABD}=S_{DBC}-S_{ABC}=\frac{1}{2}.6.6\sqrt{3}-\frac{6^2\sqrt{3}}{4}=9\sqrt{3}\left(cm^2\right)\)