Tìm x
a)1va 1/2 +x =3/2 -7
b) 1/3 .x +2/5 .(x+1)=0
c) (2x/3 -3 ): (-10) =2/5
d) /x+1/5/ -4=3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1.\left(x\ne2;4\right).\\ \Leftrightarrow\dfrac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1.\\ \Rightarrow x^2-4x-3x+12+x^2-4x+4+x^2-4x-2x+8=0.\\ \Leftrightarrow3x^2-17x+24=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}.\\x=3.\end{matrix}\right.\) (TM).
\(b)3x+12=0.\\ \Leftrightarrow3x=-12.\\ \Leftrightarrow x=-4.\)
\(c)5+2x=x-5.\\ \Leftrightarrow2x-x=-5-5.\\ \Leftrightarrow x=-10.\)
\(d)2x\left(x-2\right)+5\left(x-2\right)=0.\\ \Leftrightarrow\left(2x+5\right)\left(x-2\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{2}.\\x=2.\end{matrix}\right.\)
\(e)\dfrac{3x-4}{2}=\dfrac{4x+1}{3}.\\ \Rightarrow3\left(3x-4\right)-2\left(4x+1\right)=0.\\ \Leftrightarrow9x-12-8x-2=0.\\ \Leftrightarrow x=14.\)
\(f)\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1.\left(x\ne\pm1\right).\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x}{x^2-1}=1.\\ \Leftrightarrow x^2+3x-x^2+1=0.\\ \Leftrightarrow3x+1=0.\\ \Leftrightarrow x=\dfrac{-1}{3}.\)
\(g)\dfrac{2x}{x-1}+\dfrac{3-2x}{x+2}=\dfrac{6}{\left(x-1\right)\left(x+2\right)}.\left(x\ne1;-2\right).\\ \Leftrightarrow\dfrac{2x^2+4x+\left(3-2x\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=\dfrac{6}{\left(x-1\right)\left(x+2\right)}.\\ \Rightarrow2x^2+4x+3x-3-2x^2+2x-6=0.\\ \Leftrightarrow9x=9.\)
\(\Leftrightarrow x=1\left(koTM\right).\)
a) \(6x^2-72x=0\)
\(6x\left(x-12\right)=0\)
\(6x=0\) hoặc \(x-72=0\)
*) \(6x=0\)
\(x=0\)
*) \(x-12=0\)
\(x=12\)
Vậy \(x=0;x=12\)
b) \(-2x^4+16x=0\)
\(-2x\left(x^3-8\right)=0\)
\(-2x=0\) hoặc \(x^3-8=0\)
*) \(-2x=0\)
\(x=0\)
*) \(x^3-8=0\)
\(x^3=8\)
\(x=2\)
Vậy \(x=0;x=2\)
c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)
\(x^2-5x-x^2+6x-9=0\)
\(x-9=0\)
\(x=9\)
d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(x^3-6x^2+12x-8-x^3+8=0\)
\(-6x^2+12x=0\)
\(-6x\left(x-2\right)=0\)
\(-6x=0\) hoặc \(x-2=0\)
*) \(-6x=0\)
\(x=0\)
*) \(x-2=0\)
\(x=2\)
Vậy \(x=0;x=2\)
a: =>x/27+1=-2/3
=>x/27=-5/3
=>x=-45
b: \(\Leftrightarrow x-4=\dfrac{2}{5}:\dfrac{20}{21}=\dfrac{2}{5}\cdot\dfrac{21}{20}=\dfrac{42}{100}=\dfrac{21}{50}\)
=>x=221/50
c: \(\Leftrightarrow x+\dfrac{2}{3}=\dfrac{4}{60}=\dfrac{1}{15}\)
=>x=1/15-2/3=1/15-10/15=-9/15=-3/5
d: \(\Leftrightarrow x\cdot\dfrac{3}{5}=\dfrac{1}{5}-\dfrac{15}{14}\cdot\dfrac{21}{20}\)
=>\(x\cdot\dfrac{3}{5}=\dfrac{1}{5}-\dfrac{3}{2}\cdot\dfrac{3}{4}=\dfrac{1}{5}-\dfrac{9}{8}=\dfrac{-37}{40}\)
=>x=-37/24
e: =>-3/7x=84/45
=>x=-196/45
f: =>11/10x=-2/3
=>x=-20/33
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
a)
\(\left|x-2\right|-\dfrac{3}{5}=\dfrac{1}{2}\\ \left|x-2\right|=\dfrac{1}{2}+\dfrac{3}{5}\\ \left|x-2\right|=\dfrac{11}{10}\\ =>\left[{}\begin{matrix}x-2=\dfrac{11}{10}\\x-2=-\dfrac{11}{10}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{31}{10}\\x=\dfrac{9}{10}\end{matrix}\right.\)
b)
\(\left(x-\dfrac{7}{3}\right):\dfrac{-1}{3}=0,4\\ x-\dfrac{7}{3}=0,4\cdot\dfrac{-1}{3}\\ x-\dfrac{7}{3}=-\dfrac{2}{15}\\ x=-\dfrac{2}{15}+\dfrac{7}{3}\\ x=\dfrac{11}{5}\)
c)
\(\left|x-3\right|=5\\ =>\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\left[{}\begin{matrix}x=5+3\\x=-5+3\end{matrix}\right.\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
d)
\(\left(2x+3\right)^2=25\\ =>\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
e)
\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}:x=-\dfrac{7}{20}\)
\(x=\dfrac{1}{4}:\dfrac{-7}{20}\\ x=-\dfrac{5}{7}\)
f)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}\\ =>x-\dfrac{1}{2}=\dfrac{1}{3}\\ x=\dfrac{1}{3}+\dfrac{1}{2}\\ x=\dfrac{5}{6}\)
a) \(3\left(x-1\right)^2\cdot3x\left(x-5\right)=0\)
\(\Rightarrow9x\left(x-1\right)^2\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=5\end{matrix}\right.\)
b) \(\left(x+3\right)^2-5x-15=0\)
\(\Rightarrow\left(x+3\right)^2-5\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+3-5\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
c) \(2x^5-4x^3+2x=0\)
\(\Rightarrow2x\left(x^4-2x^2+1\right)=0\)
\(\Rightarrow2x\left[\left(x^2\right)^2-2\cdot x^2\cdot1+1^2\right]=0\)
\(\Rightarrow2x\left(x^2-1\right)^2=0\)
\(\Rightarrow2x\left(x-1\right)^2\left(x+1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
\(\text{#}Toru\)
a. 5 - 3(x + 4) = -1
⇔ 5 - 3x - 12 = -1
⇔ 3x = -1 - 5 + 12
⇔ 3x = 6
⇔ x = 2
\(d,2x^2-3=5\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
\(e,x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
2:
a: =>x-1=0 hoặc 3x+1=0
=>x=1 hoặc x=-1/3
b: =>x-5=0 hoặc 7-x=0
=>x=5 hoặc x=7
c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)
d: =>x=0 hoặc x^2-1=0
=>\(x\in\left\{0;1;-1\right\}\)