So sánh :
\(3^{2n}\)và \(2^{3n}\)\(\left(n\in N\right)\)
Ai nhanh minh tick cho!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là UCLN (2n+1:3n+1)
ta có 2n+1 chia hết cho d suy ra 3.(2n+1) chia hết cho d suy ra 6n+3 chia hết cho d
3n+1 chia hết cho d 2.(3n+1) chia hết cho d 6n+2 chia hết cho d ta lấy 6n-6n là hết;3-2=1
suy ra d=1
UCLN(2n+1;3n+1)=1
Gọi \(ƯCLN\left(6n+5;3n+2\right)\) là d.
\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\3n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\left(6n+5\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(6n+5;3n+2\right)=1\)
\(\Rightarrow\frac{6n+5}{3n+2}\) tối giản.
\(\frac{6n+5}{3n+2}\)tối giản
=>6n+5 chia hết cho 3n+2
=>(6n+5)-2(3n+2)chia hết cho 3n+2
=>6n+5-6n-4 chia hết cho 3n+2
=>1 chia hết cho 3n+2
=>đpcm
a) Ta có: \({a_{n + 1}} = 3\left( {n + 1} \right) + 1 = 3n + 3 + 1 = 3n + 4\)
Xét hiệu: \({a_{n + 1}} - {a_n} = \left( {3n + 4} \right) - \left( {3n + 1} \right) = 3n + 4 - 3n - 1 = 3 > 0,\forall n \in {\mathbb{N}^*}\)
Vậy \({a_{n + 1}} > {a_n}\).
a) Ta có: \({b_{n + 1}} = - 5\left( {n + 1} \right) = - 5n - 5\)
Xét hiệu: \({b_{n + 1}} - {b_n} = \left( { - 5n - 5} \right) - \left( { - 5n} \right) = - 5n - 5 + 5n = - 5 < 0,\forall n \in {\mathbb{N}^*}\)
Vậy \({b_{n + 1}} < {b_n}\).
vì n thuộc N* nên ta có:3 2n=(3 2)n=9 n
2 3n=(2 3)n=8 n
ví 9n>8n nên 3 2n>2 3n
vi n thuoc N* nen ta co:32n=(32)n=9n
23n=(23)n =8n
vi 9n>8n nen 32n>23n
32n và 23n (n € N )
Ta có :
32n =( 32 )n = 9n
23n = ( 23 ) n = 8n
Vì 9 > 8 => 9 n > 8 n
Vậy ......
Ta có : 32n = (32)n = 9n
23n = (23)n = 8n
Do 9 > 8 => 9n > 8n
=> 32n > 23n