bài 1 rút gon biểu thức
\(6\sqrt{\dfrac{2}{3}}-\sqrt{24}+2\sqrt{\dfrac{3}{8}}+2\sqrt{\dfrac{1}{6}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 rút gon biểu thức
\(6\sqrt{\dfrac{2}{3}}-\sqrt{24}+2\sqrt{\dfrac{3}{8}}+2\sqrt{\dfrac{1}{6}}\)
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
a: \(=\dfrac{\sqrt{2}\left(2\sqrt{2}+3\right)+2\sqrt{2}-3}{-1}\)
\(=\dfrac{4+3\sqrt{2}+2\sqrt{2}-3}{-1}=-1-5\sqrt{2}\)
b: \(=\dfrac{1}{\sqrt{10}+\sqrt{6}}-\dfrac{1}{\sqrt{10}-\sqrt{6}}\)
\(=\dfrac{\sqrt{10}-\sqrt{6}-\sqrt{10}-\sqrt{6}}{4}=\dfrac{-2\sqrt{6}}{4}=-\dfrac{\sqrt{6}}{2}\)
c: \(\dfrac{-2}{3\sqrt{8}}+\dfrac{1}{3-2\sqrt{2}}\)
\(=\dfrac{-2\left(3-2\sqrt{2}\right)+6\sqrt{2}}{6\sqrt{2}\left(3-2\sqrt{2}\right)}=\dfrac{-6+4\sqrt{2}+6\sqrt{2}}{6\sqrt{2}\left(3-2\sqrt{2}\right)}\)
\(=\dfrac{10\sqrt{2}-6}{6\sqrt{2}\left(3-2\sqrt{2}\right)}=\dfrac{10-3\sqrt{2}}{6\left(3-2\sqrt{2}\right)}=\dfrac{18+11\sqrt{2}}{6}\)
\(1,\\ a,=\sqrt{\left(3+\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}=3+\sqrt{7}-\sqrt{7}+1=4\\ b,K=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\\ c,=\sqrt{\left(6-2\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-4\right)^2}=6-2\sqrt{6}+2\sqrt{6}-4=2\\ e,=\sqrt{\left(2-\sqrt{2}\right)^2}-\left(\sqrt{6}-\sqrt{2}\right)=2-\sqrt{2}-\sqrt{6}+\sqrt{2}=2-\sqrt{6}\)
\(2,\\ a,A=\dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}+3}{x+9}\\ A=\dfrac{x+9}{\left(\sqrt{x}-3\right)\left(x+9\right)}=\dfrac{1}{\sqrt{x}-3}\\ b,x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{3}+1\\ \Leftrightarrow A=\dfrac{1}{\sqrt{3}+1-3}=\dfrac{1}{\sqrt{3}+2}=2-\sqrt{3}\)
\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{2-1}=2\sqrt{2}-2+2-\sqrt{2}=\sqrt{2}\)
\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)
\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)
\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\left(a-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{1-a}=\dfrac{a+a\sqrt{a}-\sqrt{a}-a}{1-a}=\dfrac{\sqrt{a}\left(a-1\right)}{1-a}=-\sqrt{a}\)
\(\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)
a: \(=\dfrac{6+4\sqrt{2}}{\sqrt{2}+2+\sqrt{2}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-2+\sqrt{2}}\)
\(=\dfrac{6+4\sqrt{2}}{2+2\sqrt{2}}+\dfrac{6-4\sqrt{2}}{2\sqrt{2}-2}\)
\(=\dfrac{3+2\sqrt{2}}{\sqrt{2}+1}+\dfrac{3-2\sqrt{2}}{\sqrt{2}-1}\)
=căn 2+1+căn 2-1=2căn 2
b: \(=\dfrac{\sqrt{3}+\sqrt{3+\sqrt{3}}+\sqrt{3}-\sqrt{3+\sqrt{3}}}{1-\sqrt{3}-1}=\dfrac{-2\sqrt{3}}{\sqrt{3}}=-2\)
bạn ơi cho mình hỏi câu b chi tiết hơn đước ko ạ
mình chưa hiểu lắm
b: Ta có: \(\dfrac{4}{\sqrt{3}+1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{6}{3-\sqrt{3}}\)
\(=2\sqrt{3}-2+\sqrt{3}+1-3-\sqrt{3}\)
\(=2\sqrt{3}-4\)
\(a,=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\\ b,=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\\ c,=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)
A = (2 + √2)/(1 + √2)
= √2(√2 + 1)/(1 + √2)
= √2
C = (2√3 - √6)/(√8 - 2)
= √6(√2 - 1)/[2(√2 - 1)]
= √6/2
E = (x√x + 1)/(√x + 1)
= (√x + 1)(x - √x + 1)/(√x + 1)
= x - √x + 1
A = $\frac{2 + \sqrt{2}}{1 + \sqrt{2}}$
Để rút gọn biểu thức này, ta nhân tử và chia tử cho $1 - \sqrt{2}$:
A = $\frac{(2 + \sqrt{2})(1 - \sqrt{2})}{(1 + \sqrt{2})(1 - \sqrt{2})}$
A = $\frac{-2\sqrt{2}}{-1}$
A = $2\sqrt{2}$
C = $\frac{2\sqrt{3} - \sqrt{6}}{\sqrt{8} - 2}$
Ta nhân tử và chia tử cho $\sqrt{2}$:
C = $\frac{(2\sqrt{3} - \sqrt{6})\sqrt{2}}{(\sqrt{8} - 2)\sqrt{2}}$
C = $\frac{4\sqrt{6} - 2\sqrt{3}}{2\sqrt{2}}$
C = $\frac{2\sqrt{6} - \sqrt{3}}{\sqrt{2}}$
Ta nhân tử và chia tử cho $\sqrt{6} + \sqrt{2}$:
C = $\frac{(2\sqrt{6} - \sqrt{3})(\sqrt{6} + \sqrt{2})}{(\sqrt{2})(\sqrt{6} + \sqrt{2})}$
C = $\frac{12 - 3\sqrt{2}}{2}$
C = $6 - \frac{3\sqrt{2}}{2}$
E = $\frac{x\sqrt{x+1}}{\sqrt{x+1}}$
E = $x\sqrt{\frac{x+1}{x+1}}$
E = $x$.
\(a,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{6-2}+\dfrac{3.\left(\sqrt{6}-\sqrt{5}\right)}{6-5}\\ =\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}+3\left(\sqrt{6}-\sqrt{5}\right)\\ =\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}+3\sqrt{6}-3\sqrt{5}\\ =4\sqrt{6}-2\sqrt{5}\)
\(b,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}-\dfrac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\sqrt{4+\sqrt{15}}}\\ =\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\dfrac{1}{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}-\dfrac{2}{\sqrt{8+2.\sqrt{3}.\sqrt{5}}}\\ =\sqrt{5}+\sqrt{2}-\dfrac{1}{\left|\sqrt{3}-\sqrt{2}\right|}-\dfrac{2}{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}\\ =\sqrt{5}+\sqrt{2}-\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\left|\sqrt{5}+\sqrt{3}\right|}\)
\(=\sqrt{5}+\sqrt{2}-\dfrac{\sqrt{3}+\sqrt{2}}{3-2}-\dfrac{2.\left(\sqrt{5}-\sqrt{3}\right)}{5-3}\\ =\sqrt{5}+\sqrt{2}-\sqrt{3}-\sqrt{2}-\dfrac{2.\left(\sqrt{5}-\sqrt{3}\right)}{2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{3}-\sqrt{2}-\sqrt{5}+\sqrt{3}\\ =0\)
a: \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}+\dfrac{3\left(\sqrt{6}-\sqrt{5}\right)}{1}\)
\(=\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}+3\sqrt{6}-3\sqrt{5}\)
\(=-2\sqrt{5}+4\sqrt{6}\)
b: \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}+\dfrac{2}{\sqrt{8+2\sqrt{15}}}\)
\(=\sqrt{5}+\sqrt{2}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\)
\(=\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{2}\)
=2căn 5-2căn 3
`6\sqrt(2/3)-\sqrt(24)+2\sqrt(3/8)+2\sqrt(1/6)`
`=6. \sqrt6/3 - \sqrt(2^2 .6) + 2. \sqrt(24)/8 + 2. \sqrt6/6`
`=2\sqrt6-2\sqrt6+ \sqrt6/2 + \sqrt6/3`
`=\sqrt6/2+\sqrt6/3`
`=(3\sqrt6+2\sqrt6)/6`
`=(5\sqrt6)/6`
Ta có: \(6\sqrt{\dfrac{2}{3}}-\sqrt{24}+2\sqrt{\dfrac{3}{8}}+2\sqrt{\dfrac{1}{6}}\)
\(=\dfrac{6\sqrt{2}}{\sqrt{3}}-2\sqrt{6}+2\cdot\dfrac{\sqrt{3}}{2\sqrt{2}}+\dfrac{2}{\sqrt{6}}\)
\(=2\sqrt{6}-2\sqrt{6}+\dfrac{\sqrt{3}}{\sqrt{2}}+\dfrac{\sqrt{2}}{\sqrt{3}}\)
\(=\dfrac{\sqrt{6}}{2}+\dfrac{\sqrt{6}}{3}=\dfrac{5\sqrt{6}}{6}\)