Đang làm đề tự nhiên gặp câu này có chỗ mk ko hiểu ai giúp mk nha^^.Thanks to
Tìm m để đg thẳng cắt parabol (P) tại 2 điểm phân biệt có hoành độ dương.
Tại chỗ mk in đậm ấy vậy lm kiểu sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 2 nên
( d ) đi qua A( 2,0 )
Thay A( 2,0 ) vào đường thẳng d ta được
\(\left(1-m\right).2+m+2=0\)
\(2-2m+m+2=0\)
\(4-m=0\)
\(m=4\)
b, Đường thẳng d song song vs đường thẳng y = 2x - 1 nên
1 - m = 0 và m + 2 khác -1
m = 1 và m khác -3
Xét phương trình hoành độ giao điểm:
\(x^2=\left(m+2\right)x-m+6\Rightarrow x^2-\left(m+2\right)x+m-6=0\)
Để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ dương thì phương trình trên phải có hai nghiệm phân biệt cùng dương, tức là:
\(\hept{\begin{cases}\Delta>0\\S>0\\p>0\end{cases}}\Rightarrow\hept{\begin{cases}\left(m+2\right)^2-4\left(m-6\right)>0\\m+2>0\\m-6>0\end{cases}\Rightarrow\hept{\begin{cases}m^2+28>0\\m>6\end{cases}}\Rightarrow m>6}\)
Xét 2 tam giác OAM và tam giác OBM có:
OM là cạnh chung
góc O1 = góc O2 (gt)
OA = OB (gt)
suy ra tam giác OAM = tam giác OBM (c-g-c)
suy ra AM = BM (2 cạnh tương ứng )
suy ra góc M1 = góc M2 (2 góc tương ứng)
mà góc M1 + góc M2 = 180 độ
suy ra góc M1 = góc M2 = 180/2 = 90 độ
suy ra OM vuông góc với AB
Pt hoành độ giao điểm:
\(x^2+2mx+2m=2x+3\)
\(\Leftrightarrow x^2-2x-3+2m\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)+2m\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2m+3\end{matrix}\right.\)
Do \(-1< 2\) nên bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}-2m+3\ne-1\\-2m+3< 2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m\ne2\end{matrix}\right.\)
Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{1}{2}x^2=x-m+3\)
\(\Leftrightarrow\dfrac{1}{2}x^2-x+m-3=0\)
\(\Delta=\left(-1\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-3\right)\)
\(=1-2\left(m-3\right)\)
\(=1-2m+6\)
=-2m+7
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow-2m+7>0\)
\(\Leftrightarrow-2m>-7\)
hay \(m< \dfrac{7}{2}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{\dfrac{1}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\\x_1x_2=\dfrac{c}{a}=\dfrac{m-3}{\dfrac{1}{2}}=2m-6\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_2=3x_1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x_1=2\\x_2=3x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{2}\\x_2=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Ta có: \(x_1x_2=2m-6\)
\(\Leftrightarrow2m-6=\dfrac{1}{2}\cdot\dfrac{3}{2}=\dfrac{3}{4}\)
\(\Leftrightarrow2m=\dfrac{27}{4}\)
hay \(m=\dfrac{27}{8}\)(loại)
1: Tọa độ A là:
y=0 và 4x+m-3=0
=>x=(-m+3)/4 và y=0
=>OA=|m-3|/4
Tọa độ B là:
x=0 và y=m-3
=>OB=|m-3|
Theo đề, ta có: 1/2*(m-3)^2/4=9
=>(m-3)^2/4=18
=>(m-3)^2=72
=>\(m=\pm6\sqrt{2}+3\)
2:
PTHĐGĐ là:
x^2-4x-m+3=0
Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4
Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0
=>m>-1
(4-x1)(x2-1)=2
=>4x2-4-x1x2+1=2
=>x2(x1+x2)-3-(-m+3)=2
=>x2*4-3+m-3=2
=>x2*4=2-m+6=8-m
=>x2=2-1/2m
=>x1=4-2+1/2m=1/2m+2
x1*x2=-m+3
=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2
=>-m+3-4+1/4m^2=0
=>1/4m^2-m-1=0
=>m^2-4m-4=0
=>\(m=2\pm2\sqrt{2}\)
Ta thấy 4482<2011ab<4492 do đó ko thể có 2 chữ số a và b thỏa mãn
Tức là đường thẳng đó cắt (P) trên chiều dương của tia Ox
nghĩ vậy!
ko nãy ms tìm hiểu kĩ hơn có nghĩa là
S>0
P>0
Deta>0
thoả mãn 3 đk này thì đúng.