K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

Gọi \(x_0\) là hoành độ của điểm thuộc (C) mà tại đó tiếp xuyến của (C) song song với (d)

Ta có \(y'\left(x_0\right)=\frac{3}{\left(x_0+2\right)^2}\), hệ số góc của \(\left(d\right):3x-y+15=0\) là 3

Suy ra \(\frac{3}{\left(x_0+2\right)^2}=3\Leftrightarrow\orbr{\begin{cases}x_0+2=1\\x_0+2=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x_0=-1\\x_0=-3\end{cases}}\)

Hai điểm cần tìm là \(A\left(-1;-2\right),B\left(-3;4\right)\). Vậy \(S=-2+4=2.\)

20 tháng 1 2017

a:Sửa đề: y=x^3-3x^2+2

y'=3x^2-3*2x=3x^2-6x

y=2

=>x^3-3x^2=0

=>x=0 hoặc x=3

=>y'=0 hoặc y'=3*3^2-6*3=27-18=9

A(0;2); y'=0; y=2

Phương trình tiếp tuyến có dạng là;

y-2=0(x-0)

=>y=2

A(3;2); y'=9; y=2

Phương trình tiếp tuyến có dạng là:

y-2=9(x-3)

=>y=9x-27+2=9x-25

b: Tiếp tuyến tại M song song với y=6x+1

=>y'=6

=>3x^2-6x=6

=>x^2-2x=2

=>x=1+căn 3 hoặc x=1-căn 3

=>y=0 hoặc y=0

M(1+căn 3;0); y=0; y'=6

Phương trình tiếp tuyến là:

y-0=6(x-1-căn 3)=6x-6-6căn3

M(1-căn 3;0); y=0; y'=6

Phương trình tiếp tuyến là:

y-0=6(x-1+căn 3)

=>y=6x-6+6căn 3

15 tháng 4 2018

14 tháng 2 2017

TXĐ: .

Ta có:

Gọi 

Ta có phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ là:

Để (vô nghiệm)

Không có điểm M nào thỏa mãn yêu cầu bài toán.

Chọn A.

Chú ý: Phải đưa phương trình đường thẳng (d) về dạng và xác định hệ số góc của đường thẳng d cho chính xác, tránh sai lầm khi cho hệ số góc của đường thẳng d trong bài toán này bằng 1

21 tháng 1 2018

Đáp án B

26 tháng 7 2018

Đáp án A

23 tháng 10 2017

Ta có:

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 2)

Chọn A.

13 tháng 6 2017

Đáp án D

8 tháng 6 2019

Đáp án D.

y ' = 3 x 2 − 12 x + 9

Gọi M x 0 ; x 0 3 − 6 x 0 2 + 9 x 0 − 1  là một điểm bất kì thuộc (C)  . Tiếp tuyến tại M:

  y = 3 x 0 2 − 12 x 0 + 9 x − x 0 + x 0 3 − 6 x 0 2 + 9 x 0 − 1

⇔ y = 3 x 0 2 − 12 x 0 + 9 x − 2 x 0 3 + 6 x 0 2 − 1

Gọi A a ; a − 1  là một điểm bất kì thuộc đường thẳng  y = x − 1   .

Tiếp tuyến tại M đi qua   A ⇔ 3 x 0 2 − 12 x 0 + 9 a − 2 x 0 3 + 6 x 0 2 − 1 = a − 1

⇔ 3 x 0 2 − 12 x 0 + 8 a = 2 x 0 3 − 6 x 0 2 (*).

Từ A kẻ được hai tiếp tuyến đến  C ⇔ *    có hai nghiệm  phân biệt.

Ta có  

3 x 0 2 − 12 x 0 + 8 = 0 ⇔ x 0 = 6 ± 2 3 3

Dễ thấy x 0 = 6 ± 2 3 3  không thỏa mãn .

Với   x 0 ≠ 6 ± 2 3 3 thì  * ⇔ a = 2 x 0 3 − 6 x 0 2 3 x 0 2 − 12 x 0 + 8 .

Xét hàm số f x = 2 x 3 − 6 x 2 3 x 2 − 12 x + 8 . Ta có f ' x = 6 x 4 − 8 x 3 + 20 x 2 − 16 x 3 x 2 − 12 x + 8 2 .

Bảng biến thiên của :

Vậy để (*) có 2 nghiệm phân biệt thì  a ∈ 0 ; 4   . Suy ra tập  T = 0 ; − 1 , 4 ; 3

Do đó tổng tung độ các điểm thuộc T bằng 2.