CMR:\(\dfrac{7}{12}< \dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{5}{6}\)
giúp mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}$
$=>A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$
$=>A=(1+\dfrac{1}{3}+...+\dfrac{1}{99})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100})$
$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}.2)$
$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100})-(1+\dfrac{1}{2}+...+\dfrac{1}{50})$
$=>A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}$
b) Ta có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$
$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}$
$=>A<1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$
Giải:
\(9-3\times\left(x-9\right)=6\)
\(3\times\left(x-9\right)=9-6\)
\(3\times\left(x-9\right)=3\)
\(x-9=3:3\)
\(x-9=1\)
\(x=1+9\)
\(x=10\)
\(4+6\times\left(x+1\right)=70\)
\(6\times\left(x+1\right)=70-4\)
\(6\times\left(x+1\right)=66\)
\(x+1=66:6\)
\(x+1=11\)
\(x=11-1\)
\(x=10\)
\(\dfrac{x}{13}+\dfrac{15}{26}=\dfrac{46}{52}\)
\(\dfrac{x}{13}=\dfrac{23}{26}-\dfrac{15}{26}\)
\(\dfrac{x}{13}=\dfrac{4}{13}\)
\(\Rightarrow x=4\)
\(\dfrac{11}{14}-\dfrac{3}{x}=\dfrac{5}{14}\)
\(\dfrac{3}{x}=\dfrac{11}{14}-\dfrac{5}{14}\)
\(\dfrac{3}{x}=\dfrac{3}{7}\)
\(\Rightarrow x=7\)
\(5\times\left(3+7\times x\right)=40\)
\(3+7\times x=40:5\)
\(3+7\times x=8\)
\(7\times x=8-3\)
\(7\times x=5\)
\(x=5:7\)
\(x=\dfrac{5}{7}\)
\(x\times6+12:3=120\)
\(x\times6+4=120\)
\(x\times6=120-4\)
\(x\times6=116\)
\(x=116:6\)
\(x=\dfrac{58}{3}\)
\(x\times3,7+x\times6,3=120\)
\(x\times\left(3,7+6,3\right)=120\)
\(x\times10=120\)
\(x=120:10\)
\(x=12\)
\(\left(15\times24-x\right):0,25=100:\dfrac{1}{4}\)
\(\left(360-x\right):0,25=400\)
\(360-x=400.0,25\)
\(360-x=100\)
\(x=360-100\)
\(x=260\)
\(71+65\times4=\dfrac{x+140}{x}+260\)
\(\left(x+140\right):x+260=71+260\)
\(x:x+140:x+260=331\)
\(1+140:x+260=331\)
\(140:x=331-1-260\)
\(140:x=70\)
\(x=140:70\)
\(x=2\)
\(\left(x+1\right)+\left(x+4\right)+\left(x+7\right)+...+\left(x+28\right)=155\)
\(10\times x+\left(1+4+7+...+28\right)=155\)
Số số hạng \(\left(1+4+7+...+28\right)\) :
\(\left(28-1\right):3+1=10\)
Tổng dãy \(\left(1+4+7+...+28\right)\) :
\(\left(1+28\right).10:2=145\)
\(\Rightarrow10\times x+145=155\)
\(10\times x=155-145\)
\(10\times x=10\)
\(x=10:10\)
\(x=1\)
Đều theo cách lớp 5 nha em!
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
Đặt A= \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\)
= \(\left(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\right)\)
`a)(5sqrt2-2sqrt5)/(sqrt5-sqrt2)+6/(2-sqrt{10})`
`=(sqrt{10}(sqrt5-sqrt2))/(sqrt5-sqrt2)+(6(2+sqrt{10}))/(4-10)`
`=sqrt{10}-(2+sqrt{10})`
`=-2`
`b)6/(sqrt5-1)+7/(1-sqrt3)-2/(sqrt3-sqrt5)`
`=(6(sqrt5+1))/(5-1)+(7(1+sqrt3))/(1-3)-(2(sqrt3+sqrt5))/(3-5)`
`=(6(sqrt5+1))/4-(7+7sqrt3)/2+sqrt3+sqrt5`
`=(3sqrt5+3)/2-(7+7sqrt3)/2+sqrt3+sqrt5`
`=(3sqrt5+3-7-7sqrt3+2sqrt3+2sqrt5)/2`
`=(5sqrt5-5sqrt3-4)/2`
Đặt \(A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
Ta có: \(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}>\dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}>\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{25}{100}=\dfrac{1}{4}\)
Do đó: \(A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)(1)
Ta có: \(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{25}{50}=\dfrac{1}{2}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}< \dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
Do đó: \(A< \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)(2)
Từ (1) và (2) ta suy ra ĐPCM