Tìm 2 số tự nhiên có hiệu bằng 40 và ƯCLN của chúng bằng 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vạy ta có a=12 x m;b=12 x q và ưcln của m:q =1 ta có a-b=84 hay m x 12 - 12 x q =84 =12 x (m-q) = 84 và m>p vậym-q=84:12=7 mà ucln cua mva q la 1 vay m=8 và q=1 hoặc m=9 và q=2;..................... thay so tinh tiep
các bn ghi cách làm giùm mk nhé chứ đáp án thì ai chả bít
Gọi hai số cần tìm là a và b. Giả sử a ≤ b. Ta có :
ƯCLN(a ; b) = 6 a = 6m và b = 6n (m,n ∈ N* và m ≤ n ; m,n nguyên tố cùng nhau)
Do đó a + b = 6m + 6n = 6.(m + n) = 84
⇒ m + n = 14. Vì m ≤ n và m,n N* và m,n nguyên tố cùng nhau nên ta có bảng sau :
n | 13 | 11 | 9 | ||||
b | 78 | 66 | 54 | ||||
m | 1 | 3 | 5 | ||||
a | 6 | 18 | 30 |
Vậy (b;a) ∈ {(78;6);(66;18);(54;30)}
Gọi 2 số tự nhiên đó là a và b.
Do ƯCLN(a;b) = 12 => a = 12m ; b = 12n (với m,n là 2 số nguyên tố cùng nhau)
Ta có : a - b = 12(m - n) = 84
=> m - n = 7
; mà m,n nguyên tố cùng nhau và ƯCLN(12m; 12n) = 1 => m = 8 ; n = 1
=> a = 96 ; b = 12
Vậy 2 số cần tìm là 96 và 12
20 và 60
20 và 60