K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

Giải :

Ta có: ABCD là hình bình hành nên AB //= CD, AD//=BC.

+ E đối xứng với D qua A

⇒ AE = AD

Mà BC = AD

⇒ BC = AE.

Lại có BC // AE (vì BC // AD ≡ AE)

⇒ AEBC là hình bình hành

⇒ EB //= AC (1).

+ F đối xứng với D qua C

⇒ CF = CD

Mà AB = CD

⇒ AB = CF

Mà AB // CF (vì AB // CD ≡ CF)

⇒ ABFC là hình bình hành

⇒ AC //= BF (2)

Từ (1) và (2) suy ra E, B, F thẳng hàng và BE = BF

⇒ B là trung điểm EF

⇒ E đối xứng với F qua B

16 tháng 4 2019

Giải bài 52 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có: ABCD là hình bình hành nên AB //= CD, AD//=BC.

+ E đối xứng với D qua A

⇒ AE = AD

Mà BC = AD

⇒ BC = AE.

Lại có BC // AE (vì BC // AD ≡ AE)

⇒ AEBC là hình bình hành

⇒ EB //= AC (1).

+ F đối xứng với D qua C

⇒ CF = CD

Mà AB = CD

⇒ AB = CF

Mà AB // CF (vì AB // CD ≡ CF)

⇒ ABFC là hình bình hành

⇒ AC //= BF (2)

Từ (1) và (2) suy ra E, B, F thẳng hàng và BE = BF

⇒ B là trung điểm EF

⇒ E đối xứng với F qua B

21 tháng 4 2017

Bài giải:

AE // BC (vì AD // BC)

AE = BC (cùng bằng AD)

nên ACBE là hình bình hành.

Suy ra: BE // AC, BE = AC (1)

Tương tự BF // AC, BF = AC (2)

Từ (1) và (2) suy ra E, B, F thẳng hàng và BE = BF. Nên B là trung điểm của EF, vậy E đối xứng với F qua B.


7 tháng 10 2021

thks

 

6 tháng 7 2017

Bài tập: Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Theo giả thiết ta có:

+ A là trung điểm của DE thì AD = AE       ( 1 )

+ C là trung điểm của DF thì CD = CF       ( 2 )

Ta có ABCD là hình bình hành nên AD//BC

⇒ AE//BC       ( 3 ) và AD = BC       ( 4 )

Từ ( 1 ), ( 4 ) ⇒ AE = BC       ( 5 )

Từ ( 3 ) và ( 5 ), tứ giác ACBE có cặp cạnh đối song song và bằng nhau nên là hình bình hành.

Áp dụng tính chất và định nghĩa về hình bình hành ACBE ta được Bài tập: Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Chứng minh tương tự, tứ giác ACBF là hình bình hành

Ta được:Bài tập: Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Từ ( 6 ), ( 7 ) ⇒ E, B, F thẳng hàng và BE = BF do đó B là trung điểm của EF hay E đối xứng với F qua B.

12 tháng 10 2016

      

AE // BC (vì AD // BC)

AE = BC (cùng bằng AD)

nên ACBE là hình bình hành.

Suy ra: BE // AC, BE = AC      (1)

Tương tự BF // AC, BF = AC    (2)

Từ (1) và (2) suy ra E, B, F thẳng hàng và BE = BF. Nên B là trung điểm của EF, vậy E đối xứng với F qua B

22 tháng 9 2017

Lý thuyết: Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

AC là đường trung bình của tam giác Δ DEF

⇒ AC = 1/2EF

+ ABCD là hình bình hànhLý thuyết: Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Mà DC = CF ⇒ AB = 1/2DF.

⇒ AB là đường trung bình của Δ DEF

Do đó B là trung điểm của EF hay E đối xứng với F qua B.

19 tháng 8 2016

 AE = AD; AD = BC nên AE = BC(1) 
DC = AB; DC = CF nên AB = CF (2) 
GÓC EAB = BCF (Đồng vị) (3) 
Từ (1); (2); (3) -> tgiac EAB = BCF (cgc) -> EB = BF (*) 
Mặt khác: GÓC EBA = EFD (đồng vị); ABC = ADC (gt); CBF = AEB (đồng vị) 
Cộng vế với vế: EBA + ABC + CBF = EFD + ADC + AEB 
Mà EFD + ADC + AEB = 180 độ -> EBA + ABC + CBF = 180 độ (**) 
Từ (*); (**) suy ra điểm E đối xứng với điểm F qua điểm B

19 tháng 8 2016

bạn giải cho mình ý a với 

2 tháng 10 2015

tô xanh câu hỏi của bạn , tìm trên mạng , vào chỗ có yahoo hỏi đáp đó !

11 tháng 6 2020

Vào TKHĐ là thấy hình :)

Ta có: ABCD là hình bình hành nên AB //= CD, AD//=BC.

+ E đối xứng với D qua A

⇒ AE = AD

Mà BC = AD

⇒ BC = AE.

Lại có BC // AE (vì BC // AD ≡ AE)

⇒ AEBC là hình bình hành

⇒ EB //= AC (1).

+ F đối xứng với D qua C

⇒ CF = CD

Mà AB = CD

⇒ AB = CF

Mà AB // CF (vì AB // CD ≡ CF)

⇒ ABFC là hình bình hành

⇒ AC //= BF (2)

Từ (1) và (2) suy ra E, B, F thẳng hàng và BE = BF

⇒ B là trung điểm EF

⇒ E đối xứng với F qua B