Cho tam giác ABC vuông tại A, đường cao AH. AB:AC = 3/4. AH=12cm. Tính HB, HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{9}{49}\)
\(\Leftrightarrow BH=\dfrac{9}{49}CH\)
Ta có: \(BH\cdot CH=AH^2\)
\(\Leftrightarrow CH^2\cdot\dfrac{9}{49}=42^2=1764\)
\(\Leftrightarrow CH^2=9604\)
\(\Leftrightarrow CH=98\left(cm\right)\)
\(\Leftrightarrow BH=18\left(cm\right)\)
Xét tam giác vuông AHB và CHA có :
góc AHB = góc CHA = 90độ
góc ABH = góc CAH ( cùng phụ với góc C )
Vậy tam giác AHB đồng dạng tam giác CHA ( g.g )
Suy ra : \(\frac{AH}{HC}=\frac{AB}{CA}\) ( 1 )
Theo đề bài \(\frac{AB}{AC}=\frac{3}{4}\) và AH = 12cm ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{12}{HC}=\frac{3}{4}\Rightarrow HC=\frac{12.4}{3}=16\) ( cm )
Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :
\(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{12^2}{16}=9\) ( cm )
Vậy BH = 9cm , HC = 16cm
Học tốt
B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC
AH2=HB x HC =3x4=12
AH=căn 12 r tính mấy cạnh kia đi
B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4
Thế vào cong thức Pytago Tam giác ABC tính máy cái kia
a. Xét tam giác ABC vuông tại A, theo định lý pytago ta có:
BC²=AB²+AC²
⇒AB²=BC²-AC²
⇒AB²=25²-20²
⇒AB²=225
⇒AB=15 cm
Xét tam giác ABC vuông tại A, có đường cao AH:
AB²=BH.BC
⇒BH=AB²:BC
⇒BH=15²:25
⇒BH=9 cm
CMTT, ta có:
AC²=HC.BC
⇒HC=AC²:BC
⇒HC=20²:25
⇒HC=16 cm
Xét tam giác ABC vuông tại A, có đường cao AH:
AH²=BH.HC
⇒AH²=9.16
⇒AH²=144
⇒AH = 12 cm
Vajay AH =12cm; HC =16 cm; HB =9cm; AB =15cm
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AC=\dfrac{AB\cdot3}{4}=6,75\left(cm\right)\)
\(\Delta ABC\) vuông tại A, áp dụng định lý Py-ta-go ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+6,75^2}=11,25\left(cm\right)\)
Theo hệ thức lượng giác vào tam giác vuông ABC đường cao AH có:
\(AB\cdot AC=BC\cdot AH\Rightarrow60,75=11,25AH\Rightarrow AH=\dfrac{60,75}{11,25}=5,4\left(cm\right)\)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{9^2}{11,25}=7,2\left(cm\right)\)
Ta có: AB:AC=3:4
nên \(AB=\dfrac{3}{4}AC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{4}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}=\dfrac{1}{36}\)
\(\Leftrightarrow\dfrac{1}{\dfrac{9}{16}AC^2}+\dfrac{\dfrac{9}{16}}{\dfrac{9}{16}AC^2}=\dfrac{1}{36}\)
\(\Leftrightarrow AC^2\cdot\dfrac{9}{16}=36\cdot\dfrac{25}{16}=\dfrac{225}{4}\)
\(\Leftrightarrow AC^2=100\)
hay AC=10(cm)
Ta có: \(AB=\dfrac{3}{4}AC\)
nên \(AB=\dfrac{3}{4}\cdot10=7.5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=7.5^2-6^2=4.5^2\)
hay BH=4,5(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=10^2-6^2=64\)
hay HC=8(cm)
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)
Áp dụng HTL tam giác
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\dfrac{AB}{3}=\dfrac{AC}{4}=\dfrac{\sqrt{AB^2+AC^2}}{\sqrt{3^2+4^2}}=\dfrac{BC}{5}=k\left(k>0\right)\Rightarrow AB=3k,AC=4k,BC=5k\)
Theo hệ thức lượng giác vào tam giác vuông ABC đường cao AH có:
\(AB\cdot AC=BC\cdot AH\Rightarrow3k\cdot4k=5k\cdot12\Rightarrow k=5\) \(\Rightarrow AB=15cm;AC=20cm;BC=25cm\)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right);HC=BC-HB=25-9=16\left(cm\right)\)
ta có : AB/AC=3/4=tan góc C
=> góc C=37 độ
Xét tam giác AHC vuông tại H ta có
tan góc ACH=AH/CH
=>CH=16cm
Mặt khác ta có : AH^2=HB.HC
=>HB=9cm