Chứng minh rằng :hai số lẻ liên tiếp là nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
đề bài sai rồi ko có chữ chẳng còn nếu sai thật thì 2 số liên tiếp có 1 số chắn và 1 số lẻ nên 2 số là 2 số nguyên tố cung nhau ai tivk mình sẽ may mắn
gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
Hai số nguyên tố cùng nhau là hai số lẻ có BCNN là tích của chúng
7 và 9 là hai số lẻ liên tiếp cũng là hai số nguyên tố cùng nhau
BCNN= 63
ƯCLN=1
tớ chỉ làm mẫu 1 câu thôi nhé, lười lắm
gọi 1 số là a, số kia là a+1
gọi ước chung lỡn nhất của 2 số đó là d
=> a chia hết cho d
a+1 chia hết cho d
=> a+1-a chia hết cho d
=> 1 chia hết cho d
d thuộc ước của 1 , d=1
=> 2 số đó nguyên tố cùng nhau, ok?
a)Gọi 2 số tự nhiên liên tiếp là a;a+1
=>a+1-a chia hết cho WCLN của a;a+1
=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi 2 số lẻ liên tiếp là a;a+2.
Làm như trên:
Hiệu:a+2-a=2
Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.
Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
c)Gọi WCLN(2n+1;3n+1)=d.
2n+1 chia hết cho d=>6n+3 chia hết cho d.
3n+1 ------------------=>6n+2 chia hết cho d.
Hiệu chia hết cho d,hiệu =1=>...
Vậy là số nguyên tố cùng nhau.
Chúc em học tốt^^
Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d
=>2k+1 chia hết cho d và 2k+3 chia hết cho d
=>(2k+1)-(2k+3) chia hết cho d
=>2 chia hết cho d =>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2
Mà 2k+1 và 2k+3 là số lẻ
=>ƯCLN(2k+1,2k+3)=1
=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
TAT NHIEN
VI UCLN=1