K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

Ta có: \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Vì \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow a=b=c}\)

\(\Rightarrow A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}=\frac{2a.2a.2a}{a.a.a}=\frac{8a^3}{a^3}=8\)

21 tháng 7 2018

\(a;b;c\ne0;a+b+c\ne0\Rightarrow a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu "=" xảy ra <=> a = b = c

Ta có: a3 + b3 + c3 = 3abc => a = b = c

Nên \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=2^3=8\)

Vậy A = 8

P/s: Không chắc lắm, mong các bạn góp ý. Cảm ơn

21 tháng 6 2020

Bạn Hồ Khánh Châu là sai rồi !

nó có dương đâu mà cô-si ? nó chỉ mới khác 0 mà 

Bài 2: 

a: \(x^2\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

b: \(x^8+36x^4=0\)

\(\Leftrightarrow x^4=0\)

hay x=0

2 tháng 10 2021

a(b+3)-b(3+b)

=(3+b)(a-b)

Thay số, có: (3+1997).(2003-1997)

= 2000.6 =12000

xy(x+y)-2x-2y

xy(x+y)- 2(x+y)

(x+y).(xy-2)

Thay số, co: 7. (8-2)

7.4=28

9 tháng 6 2020

Ta có: a - b - c = 0 \(\Rightarrow\hept{\begin{cases}b-a=-c\\a-c=b\\b+c=a\end{cases}}\)

\(A=\left(1-\frac{c}{a}\right)\left(1-\frac{a}{b}\right)\left(1+\frac{b}{c}\right)=\frac{a-c}{a}.\frac{b-a}{b}.\frac{c+b}{c}=\frac{b}{a}.\frac{-c}{b}.\frac{a}{c}=-1\)

6 tháng 8 2021

Tham khảo

\(A=\left(b+a\right)+\left(c-d\right)-\left(c+a\right)-\left(b-d\right)\)

\(A=b+a+c-d-c-a-b+d\)

\(A=\left(b-b\right)+\left(a-a\right)+\left(c-c\right)+\left(-d+d\right)\)

\(A=0\)

 

\(B=\left(a-d\right)-\left(d+a\right)-\left(c-d\right)+\left(c+b\right)\)

\(B=a-d-d-a-c+d+c+b\)

\(B=\left(a-a\right)+\left(d-d+d\right)+\left(-c+c\right)+b\)

\(B=d+b\)

a) Ta có: \(A=\left(b+a\right)+\left(c-d\right)-\left(c+a\right)-\left(b-d\right)\)

\(=a+b+c-d-c-a-b+d\)

=0

b) Ta có: \(B=\left(a-d\right)-\left(a+d\right)-\left(c-d\right)+\left(c+b\right)\)

\(=a-d-a-d-c+d+c+b\)

=b-d