K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

 Vẽ hình thang ABCD, AB song song với CD. Lấy M, N lần lượt là trung điểm của BD và AC. Lấy H và K lần lượt là trung điểm của BC và AD.
Xét tam giác BCD có: - KB = KC (gt)
- MB = MD (gt)
MK là trung bình của BCD.
MK song song và bằng ½ CD
Tương tự như trên ta có:
- HN là trung bình ADC. HN song song và bằng ½ CD.
- HM là trung bình ABD. HM song song và bằng ½ AB.
- KN là trung bình của CAB. KN song song và bằng ½ AB.
H, M, N, K thẳng hàng (tiên đề Ơ – clit)
HK là trung bình của hình thang ABCD (tự chứng minh).
HK = (AB + CD)/2 (t/c)
HM + NK + KM + HN = 2HK.
mà MN = HK – HM – NK
MN = (HM + NK + KM + HN)/2 – HM – NK
= (AB + CD)/2 – AB
= 1/2AB – AB + CD/2
= CD/2 – 1/2AB
= (CD – AB)/2 (đpcm)

29 tháng 7 2015

Hình thang ABCD có AB//CD, AB<CD, E, F lần lượt là trg điểm của AC, BD
Kéo dài EF cắt DC tại I
Tam giác ABF=IDF(gcg)~> F là trg điểm của AI và AB=DI~> EF=1/2 IC và DC-AB=IC~> đpcm

29 tháng 7 2017

EF sai cắt DC tại I ,EF//DC mà

6 tháng 7 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giả sử hình thang ABCD có AB // CD, AB < CD

Gọi I, K lần lượt là trung điểm hai đường chéo BD, AC; F là trung điểm của BC.

* Trong ∆ ACB, ta có:

K là trung điểm của cạnh AC

F là trung điểm của cạnh BC

Nên KF là đường trung bình của  ∆ ACB

⇒ KF // AB và KF = 1/2 AB

(tính chất đường trung bình của tam giác)

Trong  ∆ BDC, ta có: I là trung điểm của cạnh BD

F là trung điểm của cạnh BC

Nên IF là đường trung bình của  ∆ BDC

⇒ IF // CD và IF = 1/2 CD (tính chất đường trung bình của tam giác)

FK // AB mà AB // CD nên FK // CD

FI // CD (chứng minh trên)

Suy ra hai đường thẳng FI và FK trùng nhau.

⇒ I, K, F thẳng hàng, AB < CD ⇒ FK < FI nên K nằm giữa I và F

IF = IK + KF

⇒ IK = IF – KF = 1/2 CD - 1/2 AB = (CD - AB)/2

28 tháng 4 2017

Xét hình thang ABCD có AB // CD và AB < CD.

Gọi M là trung điểm AB, E là trung điểm của BD, F là trung điểm của AC.

Theo tính chất đường trung bình tam giác, ta có : MF // CD và MF = 1/2 CD (1) ME // AB // CD và ME = 1/2 AB   (2) Từ (1) và (2) suy ra M, E, F thẳng hàng (vì qua điểm M chỉ có 1 đường thẳng song song với CD). Vì CD > AB nên MF > ME, hay là E nằm giữa M và F. Ta có: \(EF=MF-ME=\dfrac{1}{2}CD-\dfrac{1}{2}AB=\dfrac{1}{2}\left(CD-AB\right)\) (điều phải chứng minh)