CMR tổng của 3 số liên tiếp chia hết cho 3
CMR tổng của 5 số liên tiếp chia hết cho5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Có: a+(a+1)+(a+2)=a+a+a+1+2=3a+3=3(a+1)\(⋮\) 3
Vậy ...
Gọi 5 số tự nhiên liên tiếp là a, a+1, a+2,a+3,a+4
Có : a+(a+1)+(a+2)+(a+3)+(a+4)= a+a+a+a+a+1+2+3+4=5a+10=5(a+2)\(⋮\) 5
Vậy ...
2.
+)Gọi 3 số chẵn liên tiếp là a, a+2,a+4
Có : a+(a+2)+(a+4)=a+a+a+2+4=3a+6
mà a là số chẵn nên 3a \(⋮\) 6
\(\Rightarrow\) 3a+6\(⋮\) 6
Vậy ....
+) ngược lại ý đầu
+)Gọi 5 số chẵn liên tiếp là a, a+2,a+4 , a-2,a-4
Có : a+(a+2)+(a+4)+(a-2)+(a-4)=a+a+a+a+a+2+4-2-4=5a
mà a là số chẵn nên 5a \(⋮\) 10
\(\Rightarrow\) 5a\(⋮\) 10
Vậy ....
+) ngược lại ý 3
CMR tổng của 3 số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp chia hết cho 5
-Gọi 3 số tự nhiên liên tiếp la a;a+1;a+2
Tổng 3 số trên là:
a+(a+1)+(a+2)=(a+a+a)+(1+2)=a.3+3 chia hết cho 3
Gọi 3 số tự nhiên liên tiếp là: n; n+1; n+2
Tổng 3 số là: n+ ( n+1) + (n+2)
= n + n +1 + n+2
= n.3 + 3
Vì n.3+3 chia hết cho 3 nên n+ ( n+1) + (n+2)\(⋮\)3
Vậy...
Ta có : a+1 ; a+2 ; a+3 là 3 số tn liên tiếp (a thuộc n)
=>a+1+a+2+a+3=3a+6 =3.(a+2)
do 3.(a+2) chia hết cho 3
=> đpcm
Lại có : a+1;a+2;a+3;a+4;a+5 là 5 số tn liên tiếp (a thuộc n)
=>a+1+a+2+a+3+a+4+a+5=5a+15=5.(a+3)
do5.(a+3) chia hết cho 5
=>đpcm
Lâu lắm r cg ko làm dạng này :))
Gọi 3 số tự nhiên liên tiếp là : a;a+1;a+2
Ta có: a+a+1+a+2=a+a+a+3
= a.3+3
=> tổng 3 số tự nhiên liên tiếp chia hết cho 3
Gọi 5 số tự nhiên liên tiếp là: a;a+1;a+2;a+3;a+4
Ta có: a+a+1+a+2+a+3+a+4= a.5+10
= a.5+5.2
= 5.(a+2)
=> tổng 5 số tự nhiên liên tiếp chia hết cho 5
5 số chẵn liên tiếp là: 2n, 2(n+1), 2(n+2), 2(n+3), 2(n+4)
Tổng của chúng là: 2n + 2(n+1) + 2(n+2) + 2(n+3) + 2(n+4)= 10n+ 2 + 4 + 6 + 8 = 10n + 20 = 10(n+1)
Số này không chắc đã chia hết cho 3, Bài Toán sai
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5
a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm
c)Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
Ta có: a+a+1+a+2+a+3+a+4 =(a+a+a+a+a)+(1+2+3+4) =5.a+10 =5.(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
a) thấy 60 chia hết cho 15 => 60n chia hết cho 15
45 chia hết cho 15 nhưng không chi hết cho 30
=> 60n+45 chia hết cho 15 nhưng không chia hết cho 30
b) ta có 3 số nguyên liên tiếp là a,a+1,a+2
tổng của 3 số nguyên liên tiếp này là a+a+1+a+2=3a+3 chia hết cho 3
d) vì khi chia 4 stn này cho 5 nhận các số dư khác nhau => 1 số là 5k+1, 1 số là 5n+2, 1 số là 5a+3, 1 số là 5b+4 (với k,n,a,b thuộc n)
=> tổng 4 stn này là 5k+1+5n+2+5a+3+5b+4= 5(k+n+a+b)+5 chia hết cho 5
Gọi 3 STN liên tiếp là a;a+1;a+2(a là STN)
Ta có tổng 3 STN liên tiếp là:a+(a+1)+(a+2)=3a+3=3(a+1) chia hết cho 3(đpcm)
Gọi 5 STN liên tiếp là:x;x+1;x+2;x+3;x+4(x là STN)
Ta có tổng 5 STN liên tiếp là:x+(x+1)+(x+2)+(x+3)+(x+4)=5x+10=5(x+2) chia hết cho 5(đpcm)