K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2021

- Gọi các số đó là : \(x_1,x_2.....x_{2021}\)

Ta có : \(\left\{{}\begin{matrix}x_1.x_2.x_3>0\\......\\\end{matrix}\right.\)

- Để \(x_1.x_2.x_3>0\) thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x1>0\\x2< 0\\x3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x1< 0\\x2>0\\x3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x1>0\\x2< 0\\x3< 0\end{matrix}\right.\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x1>0\\x2>0\\x3>0\end{matrix}\right.\)

CMTT => Trường hợp thỏa mãn là : \(\left\{{}\begin{matrix}x1>0\\....\\x2021>0\end{matrix}\right.\)

Vậy ....

NV
7 tháng 7 2021

Phản chứng: gọi các số hữu tỉ là \(a_1;a_2;a_3;a_4...\)

Do tích các số đều dương nên tất cả chúng đều khác 0

Nếu tồn tại 1 số trong đó là số âm, giả sử \(a_1< 0\)

Do \(a_1.\left(a_2.a_3\right)>0\Rightarrow a_2a_3< 0\) (1)

\(\left(a_2a_3\right)a_4>0\) mà \(a_2a_3< 0\Rightarrow a_4< 0\)

\(\Rightarrow a_1a_4>0\)

\(a_1a_2a_4>0\) mà \(a_1a_4>0\Rightarrow a_2>0\) (2)

\(a_1a_3a_4>0\) mà \(a_1a_4>0\Rightarrow a_3>0\) (3)

(2); (3) \(\Rightarrow a_2a_3>0\) mâu thuẫn với (1)

Vậy điều giả sử là sai hay 2021 số đó đều dương

25 tháng 6 2015

giả sử 2015 số đã cho là:

a1 bé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015

Vì tích 3 số bất kỳ luôn luôn dương 

nên trong dãy số có nhiều nhất 2 số âm

\(\vec{ }\)

a1;a2 <0

ta có: a1.a2014.a2015 <0

mà đề cho:a1.a2014.a2015>0

\(\vec{ }\)

a1;a2 không thể âm

Do vậy 2015 số đã cho phải là số dương

26 tháng 6 2015

iả sử 2015 số đã cho là:

abé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015

Vì tích 3 số bất kỳ luôn luôn dương 

nên trong dãy số có nhiều nhất 2 số âm

$\vec{ }$→

a1;a2 <0

ta có: a1.a2014.a2015 <0

mà đề cho:a1.a2014.a2015>0

$\vec{ }$→

a1;a2 không thể âm

Do vậy 2015 số đã cho phải là số dương

6 tháng 7 2015

giả sử 2015 số đã cho là:

abé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015

Vì tích 3 số bất kỳ luôn luôn dương 

nên trong dãy số có nhiều nhất 2 số âm

$\vec{ }$→

a1;a2 <0

ta có: a1.a2014.a2015 <0

mà đề cho:a1.a2014.a2015>0

$\vec{ }$→

a1;a2 không thể âm

Do vậy 2015 số đã cho phải là số dương

15 tháng 8 2016

- Gọi các số cần tìm theo thứ tự từ bé -> lớn là : a1 ; a2 ; a; ... a100

- Ta có : a1 ; a2 ; a; a100 < 0

=> Cả 3 số cùng âm 

hoặc a1 âm và a2;a100 dương ( không thể theo thứ tự khác vì từ đầu ta đã nói là từ bé -> lớn )

+ ; alà số dương => a3 ; a; a100 đều là số dương ( vì đã từ bé -> lớn ) -> mâu thuẫn vì tích 3 số bất kì đều < 0

=> Trường hợp ( a100 là số âm )

=> 100 số đề là số âm.

- Tích của 2 số âm là 1 số dương mà có 50 cặp => tích 100 số trên là số dương

15 tháng 8 2016

Còn con b ai giải giúp với

28 tháng 5 2015

a) Tổng của 4 số là 1 số dương nên chắc chắn trong 4 số đó có 1 số dương

Bớt số dương đó ra => còn lại 12 số . Chia 12 số đó thành 3 nhóm, mỗi nhóm có 4 chữ số

=> Giá trị mỗi nhóm là số dương => Tổng 12 số đó dương

Cộng với số dương đã bớt ra => tổng của 13 số đã cho dương

28 tháng 5 2015

Nhìn vào cái này thì thấy cái khác quay, hoa mắt quá !!!

19 tháng 12 2021
2021 số đó không hẳn là số nguyên dương
26 tháng 4 2015

Trong 25 số đã cho có ít nhất 1 số là số dương (vì nếu 25 số đã cho đều âm thì tổng của 4 số bất kỳ không thể là 1 số dương)

Tách riêng số dương đó ra còn 24 số, nhóm 4 số vào 1 nhóm thì được 6 nhóm. Trong đó nhóm nào cũng là 1 số dương

=> Tổng của 24 số là 1 số dương cộng thêm 1 số dương đã tách.

Vậy tổng của 25 số đó là 1 số dương