K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: mx+y=2m+2 và x+my=11

Khi m=-3 thì hệ sẽ là:

-3x+y=-6+2=-4 và x-3y=11

=>-3x+y=-4 và 3x-9y=33

=>-8y=29 và 3x-y=4

=>y=-29/8 và 3x=y+4=3/8

=>x=1/8 và y=-29/8

2: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{m}{1}< >\dfrac{1}{m}\)

=>m^2<>1

=>m<>1 và m<>-1

Để hệ vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{2m+2}{11}\)

=>(m=1 hoặc m=-1) và (11m=2m+2)

=>\(m\in\varnothing\)

Để hệ vô nghiệm thì m/1=1/m<>(2m+2)/11

=>m=1 hoặc m=-1

11 tháng 9 2023

bạn giúp mình trả lời câu hỏi toán mình mới đăng trong trang của mình được ko ạ

 

bài 2 giải hệ phương trình
2x-y=1
x^2+xy+2y^2=4
=> y = 2x - 1
Thay vao x^2 + xy + 2y^2 = 4
<=> x^2 + x.(2x - 1) + 2.(2x - 1)^2 = 4
<=> x^2 + 2x^2 - x + 2.(4x^2 - 4x + 1) = 4
<=> x^2 + 2x^2 - x + 8x^2 - 8x + 2  - 4 = 0
<=> 11x^2 - 9x - 2 = 0
=> x = 1 => y= 1
hoac x = -2/11 => y = -15/11

Bài 2 giải hệ phương trình
2x-y=1 
x^2+xy+2y^2=4 (*)
Ta có 2x-y=1 suy ra y=2x-1 (1)
(1) thay vào (*) ta được 5x^2-5x-2=0 Bấm máy tính giải pt bậc 2 là ra bạn

a: Khi m=2 thì hệ sẽ là;

2x-y=4 và x-2y=3

=>x=5/3 và y=-2/3

b:  mx-y=2m và x-my=m+1

=>x=my+m+1 và m(my+m+1)-y=2m

=>m^2y+m^2+m-y-2m=0

=>y(m^2-1)=-m^2+m

Để phương trình có nghiệm duy nhất thì m^2-1<>0

=>m<>1; m<>-1

=>y=(-m^2+m)/(m^2-1)=(-m)/m+1

x=my+m+1

\(=\dfrac{-m^2+m^2+2m+1}{m+1}=\dfrac{2m+1}{m+1}\)

x^2-y^2=5/2

=>\(\left(\dfrac{2m+1}{m+1}\right)^2-\left(-\dfrac{m}{m+1}\right)^2=\dfrac{5}{2}\)

=>\(\dfrac{4m^2+4m+1-m^2}{\left(m+1\right)^2}=\dfrac{5}{2}\)

=>2(3m^2+4m+1)=5(m^2+2m+1)

=>6m^2+8m+2-5m^2-10m-5=0

=>m^2-2m-3=0

=>(m-3)(m+1)=0

=>m=3 

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1

21 tháng 11 2014

a)thay m=2 => {2x+y=1(1);x+2y=3(2)    

nhân thêm 2 vào (1) Ta có {4x+2y=2;x+2y=3

=>{4x+2y=2;3x=3

<=>{4x+2y=2;x=3

thay x=3 vào(1)=>2.2+y=1

=>y=-5
b) Để hpt có nghiệm duy nhất =>x=y

đặt x=y=a

=>{am+a=1,a+am=2m-1

=>2m-1=1

<=>m=1y2=3y3x(1)x2=3x3yy2=3y3x(1)x2=3x−>y

=>y=2m-3-mx và \(x+m\left(2m-3-mx\right)=m^2-m+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2-3m-m^2x+x=m^2-m+3\\y=2m-3-mx\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(1-m^2\right)=m^2-m+3-2m^2+3m=-m^2+2m+3\\y=2m-3-mx\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(m-1\right)\left(m+1\right)=\left(m-3\right)\left(m+1\right)\\y=2m-3-mx\end{matrix}\right.\)

Để phương trình có nghiệm duy nhất thì m<>1; m<>-1

=>\(\left\{{}\begin{matrix}x=\dfrac{m-3}{m-1}\\y=2m-3-\dfrac{m\left(m-3\right)}{m-1}=\dfrac{2m^2-5m+3-m^2+3m}{m-1}=\dfrac{m^2-2m+3}{m-1}\end{matrix}\right.\)

x+y=3

=>\(m^2-2m+3+m-3=3\left(m-1\right)\)

=>m^2-m-3m+3=0

=>m^2-4m+3=0

=>m=1(loại) hoặc m=3(nhận)

12 tháng 2 2023

giúp mình với

 

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+4y=9\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=8-y=8-\dfrac{1}{3}=\dfrac{23}{3}\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{23}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

b) Để hệ phương trình có nghiệm (1;3) thì 

Thay x=1 và y=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}m+12=9\\1+3m=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\3m=7\end{matrix}\right.\Leftrightarrow m\notin\varnothing\)

Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm (1;3)

25 tháng 1 2021

Thay m=1 vào hpt trên ta có:

1.x+4y=9 và x+1y=8

<=> x+4y=9 và x+y=8

<=>  x+4y=9 và 4x+4y=32

<=> -3x = -23 và  x+y=8

<=> x = \(\dfrac{23}{3}\) và y = \(\dfrac{1}{3}\)

b) Để hệ phương trình có nghiệm (1;3)

=> x = 1; y = 3

Thay x = 1; y = 3 vào hpt trên ta có:

       m1+43=9 và 1+m3=8

<=> m+12 = 9 và 1 + 3m = 8

<=> m = -3 và m = \(\dfrac{7}{3}\)

Vậy m \(\in\left\{-3;\sqrt{\dfrac{7}{3}}\right\}\) thì hệ phương trình có nghiệm (1;3)

c) mx+4y=9 và x+my=8 

SD phương pháp thế

Ra pt bậc nhất 1 ẩn: 8m - m2y + 4y = 9

                       <=> 8m -  y(m-4) = 9

Để hệ phương trình có nghiệm duy nhất => m-4 \(\ne\) 0

<=> m \(\ne\) 4

<=> m  \(\ne\) 2 và m  \(\ne\) -2