K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)

Suy ra: AH=AK(hai cạnh tương ứng)

b) Ta có: \(\widehat{BDA}+\widehat{DAH}=90^0\)

\(\widehat{BAD}+\widehat{KAD}=90^0\)

mà \(\widehat{DAH}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

nên \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔABD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔABD cân tại B(Định lí đảo của tam giác cân)

c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

11 tháng 7 2021


 

 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)

c) Ta có: ΔADH vuông tại H(gt)

nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)

Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔBAD cân tại B(Định lí đảo của tam giác cân)

4 tháng 5 2022

db

 

 

a: Xet ΔAHD vuông tại H và ΔAKD vuông tại K co

AD chung

góc HAD=góc KAD

=>ΔAHD=ΔAKD

b: góc BAD+góc CAD=90 độ

góc BDA+góc DAH=90 độ

góc CAD=góc DAH

=>góc BAD=góc BDA
=>ΔBAD cân tại B

3 tháng 5 2019

A B C H D K

a) Xét \(\Delta ABC\)có AB = 5cm; AC = 12cm. Theo định lý Py-ta-go ta có:

       \(BC^2=AB^2+AC^2\)

       \(BC^2=5^2+12^2\)

       \(BC^2=25+144\)

       \(BC^2=169\) 

        \(BC=13\)

Vậy cạnh BC = 13cm

b)Xét tam giác AHD và tam giác AKD ta có:

      \(\widehat{AHD}=\widehat{AKD}=90^o\)

       AD chung

       \(\widehat{DAH}=\widehat{DAK}\)(AD là tia phân giác)

=> tam giác AHD = tam giác AKD (g.c.g)

     

3 tháng 5 2019

Bạn có thể làm ý d được ko ạ

25 tháng 5 2018

a) xét tam giác AKD và tam giác AHD , có :
góc KAD = góc DAH ( do AD là phân giác )
góc DKA = góc DHA (=90 độ )
AD : cạnh chung 
do đó tam giác AKD = tam giác AHD ( cạnh huyền - góc nhọn )

b) có DK vuông góc với AC ( gt)
AB vuông góc với AC ( do tam giác ABC vuông tại A )
=) KD song song AB (dhnb 2 đt song song )
=) góc ADK = góc DAB ( 2 góc so le trong )
lại có góc BDA = góc KDA ( do tam giác ADK = tam giác AHD )
=) tam giác ABD cân tại B
mà góc ABD=60 độ ( D thuộc AC )
=) tam giác ABD đều

c) có BH + AH > AB ( BĐT tam giác)
         CH + AH > AC ( BĐT tam giác)
cộng cả hai vế của 2 BĐT trên ta có :
      BH+CH+AH+AH>AB+AC
(=) BC + 2AH > AB + AC
hay AB + AC < BC + 2AH

chúc e học tốt !!