cho điểm A ở ngoài đường tròn (O;R). Kẻ tiếp tuyến AB (B là tiếp điểm ) và cát tuyến AMN ( M nằm giữ A và N ). Gọi I là trung điểm của MN . Qua B kẻ dây cung vuông góc vs OA tại H và cắt ( O) tại C
a, Cho R= 6cm , OA = 10cm. Tính độ dài AB
b, Chứng minh : 4 điểm A, B , I,O cùng thuộc 1 đường tròn . Xác định tâm bán kính của đường tròn đó .
a) Áp dụng định lí Pytago vào ΔABO vuông tại B, ta được:
\(OA^2=OB^2+AB^2\)
\(\Leftrightarrow AB^2=10^2-6^2=64\)
hay AB=8(cm)
b) Xét tứ giác OIBA có
\(\widehat{OIA}=\widehat{OBA}\left(=90^0\right)\)
Do đó: OIBA là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay O,I,B,A cùng thuộc 1 đường tròn
Tâm là trung điểm của OA