Biện luận theo m TXĐ của hàm số \(y=\dfrac{x^2-1}{x^2-2mx+m^2-2m+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Với \(m=1\) pt có nghiệm duy nhất \(x=3\)
Với \(m\ne1\Rightarrow\Delta'=m^2-\left(m-1\right)\left(m-7\right)=8m-7\)
- Với \(m=\frac{7}{8}\) pt có nghiệm kép \(x=7\)
- Với \(m< \frac{7}{8}\) pt vô nghiệm
- Với \(\left\{{}\begin{matrix}m>\frac{7}{8}\\m\ne1\end{matrix}\right.\) pt có 2 nghiệm pt \(x_{1;2}=\frac{-m\pm\sqrt{8m-7}}{m-1}\)
2/ Ý a dễ, bạn tự làm
b/ Với \(m=0\Rightarrow x=-2\)
Với \(m\ne0\Rightarrow\Delta=\left(2m+1\right)^2-4m\left(m+2\right)=1-4m\)
- Với \(m=\frac{1}{4}\) pt có nghiệm kép \(x=1\)
- Với \(m>\frac{1}{4}\) pt vô nghiệm
- Với \(m< \frac{1}{4}\) pt có 2 nghiệm pb \(x_{1;2}=\frac{-2m-1\pm\sqrt{1-4m}}{2m}\)
thấy x bật nhất thì dùng biện luận theo kiểu bật nhất
thấy x bật 2 thì dùng denta
a: =>x(m-2)(m+2)=-m+2
Để phương trình có nghiệm duy nhất thì (m-2)(m+2)<>0
=>m<>2; m<>-2
Đểphương trình vô nghiệm thì m+2=0
=>m=-2
Để phương trình có vô số nghiệm thì m-2=0
=>m=2
b: \(\Leftrightarrow x\left(m^2-16\right)=4m\)
Để phương trình có nghiệm duy nhất thì m^2-16<>0
hay \(m\notin\left\{4;-4\right\}\)
Để phương trình vô nghiệm thì m^2-16=0
=>m=4 hoặc m=-4
c: TH1: m=3
Pt sẽ là 4x-2=0
=>x=1/2
TH2: m<>3
\(\text{Δ}=4^2-4\cdot\left(-2\right)\cdot\left(m-3\right)\)
=16+8(m-3)
=8m-24+16=8m-8
Để phương trình vô nghiệm thì 8m-8<0
=>m<1
Để phương trình có nghiệm duy nhất thì 8m-8=0
=>m=1
Để phương trình có hai nghiệm phân biệt thì 8m-8>0
=>m>1
d: \(\text{Δ}=\left(-5\right)^2-4\left(2m-1\right)\)
=25-8m+4
=-8m+29
Để phương trình vô nghiệm thì -8m+29<0
=>-8m<-29
=>m>29/8
Để phương trình có nghiệm duy nhất thì -8m+29=0
=>m=29/8
Để phương trình có hai nghiệm phân biệt thì -8m+29>0
=>m<29/8
Lời giải:
a)
\(\Delta=9-4m\)
Nếu \(m>\frac{9}{4}\Rightarrow \Delta=9-4m<0\Rightarrow \) pt vô nghiệm
Nếu \(m=\frac{9}{4}\Rightarrow \Delta=9-4m=0\Rightarrow \) pt có nghiệm kép \(x_1=x_2=\frac{3}{2}\)
Nếu \(m< \frac{9}{4}\Rightarrow \Delta=9-4m>0\Rightarrow \) pt có 2 nghiệm phân biệt
\(x_1=\frac{3+\sqrt{9-4m}}{2}; x_2=\frac{3-\sqrt{9-4m}}{2}\)
b)
Nếu \(m=\frac{1}{2}\) thì : \(-x+1=0\).
PT có nghiệm duy nhất $x=1$
Nếu \(m\neq \frac{1}{2}\Leftrightarrow 2m-1\neq 0\). PT đã cho là PT bậc 2 ẩn $x$.
\(\Delta'=m^2-(2m-1)=(m-1)^2\)
+) \(m=1\Rightarrow \Delta'=0\): PT có nghiệm kép \(x_1=x_2=1\)
+) \(m\neq 1\Rightarrow \Delta'>0\): PT có hai nghiệm phân biệt
\(x_1=\frac{m-(m-1)}{2m-1}=\frac{1}{2m-1}\); \(x_2=\frac{m+(m-1)}{2m-1}=1\)
Vậy.......
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
Xét pt: \(x^2-2mx+m^2-2m+3=0\) (1)
\(\Delta'=m^2-\left(m^2-2m+3\right)=2m-3\)
- Nếu \(2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\Rightarrow\left(1\right)\) vô nghiệm hay hàm xác định trên R
- Nếu \(2m-3=0\Leftrightarrow m=\dfrac{3}{2}\Rightarrow\left(1\right)\) có nghiệm kép \(x=\dfrac{3}{2}\) hay TXĐ của hàm: \(D=R\backslash\left\{\dfrac{3}{2}\right\}\)
- Nếu \(2m-3>0\Leftrightarrow m>\dfrac{3}{2}\Rightarrow\left(1\right)\) có 2 nghiệm pb \(x_{1,2}=m\pm\sqrt{2m-3}\) hay TXĐ của hàm là: \(D=R\backslash\left\{m-\sqrt{2m-3};m+\sqrt{2m-3}\right\}\)